
���������	��

����������
��	����������������������������
���
���������� ����������

!#"�$&%	')(+*-,.*0/2143.3

Department of Linguistics, Uppsala University

57698;:�<>=#?>:
@4ACBEDGFCHJIEBEK�LEM2NOM�DJKPHJBEQCM�DGIEACM

Uplug-systemRTSVUXWCYOZC[ESC\G]JW_^4`Ea�SO\Jbdc)[ESC` ^�WC\�Ufe+gO`Eb�gCYOb�Y�^�WO\7`+hOb
eEgC`EbPiC\JSO`+eEWOgjW_^�`Eblkm`Pc)\JWOn�bP]J]JeEgCi�`EWCWO[+]�oOpq`meEgOn�[EZCYOb�]r`+hO\Jb�bTnPWCUsc�WCgCbPgC`E]Jt-u�g�bvkw`Eb�gO]JeExC[EbTp y�z�[EeExC\JSO\|{
a�hOe+nPh}c�\JWC~Pe+YOb�]�S�`E\JSCgO]|c)SO\Jb�gO`�eEgO`+bP\ ^�SCnPbw^�WC\�a�WO\J��eEgOida�eE`Ehd`Eblkm`+ZOSC[.YCSO`ESCRmSj`EWCWC[l^�WO\�n�WOUXxCeEgOe+gOi
]JeEgOiC[Eb��q`ESC]���`Eblkm`wSCgOY�nPWC\|c�ZC]�c�\JWCnPb�]J]�e+gOi�U�WCYCZO[Eb�]�eEgO`+Wj]JbP�CZCbPgC`EeESC[E[{�bvkwbPn�ZC`ESOxC[Eb�]+{w]J`Eb�U�]JRCSOgCY�S
iO\JS;c�hCeEn�SO[�ZO]Jb�\7eEgC`EbP\ ^�SCn�b�^4WO\7\JZCgOgCeEgCi
�.c)[EZCi	S;cCc�[Ee+nPSC`EeEWCgO]JR�UXWOYCe ^�{weEgCiGc)SC\�SCUXbP`+bP\�]JbP`+`EeEgCiO]JR
SOgCY�e+gO~�bP]J`Ee+iOSC`EeEgCi�\Jb�]�ZC[E`Ee+gOi�YOSC`ESCo��-hOb�]+{w]J`Eb�U�]JZ;cOc)WO\J`E]�S�~�SC\�e+bP` {�W_^�]J`EWC\�SCiCb�^�WC\�UXSC`E]
eEgCnP[EZCYCeEgOi�`EhCWO]JbTWq^�]�`+SOgCYOSC\JY�YCSO`ESCxCSO]JbTUXSCgOSCiOb�UXbPgC`m`EWCWO[E]s]JZOn�h�SC]r�C���r��SOgCY��X�X�9��SO]sa�bP[+[
SO]}]�e+Urc)[Eb������T^�WO\JUXSC`E]�SOgCY�WO`+hOb�\�`Eblkm`#WO\JeEb�gO`+bPY�YCSO`ES9^�WC\JUXSO`E]Jow�9ZC\J`EhCbP\JUXWO\Jb�RwnPWCgCgOb�nP`+eEWOgC]�`EW
\JbP[ESC`EeEWCgCSO[mYCSO`ESCxCSO]Jb�]rSC\�b}]�Z;cCc�WC\J`EbPYj~PeES�S�`+\�SCgC]+c)SC\�b�gC`OYCSO`+SOxCSO]Jb�`EWCWC[ExOW;kwo#�.c�[EZCi�S;cOc)[EeEn�SO`+eEWOgC]
nPSCg2xCb7SOYq��ZC]�`+bPY2b�SO]JeE[{�x&{�UXWCYOe ^�{meEgCi2]J`ESCgOYCSO\JYCeE]JbPY2n�WCg_^�e+iOZC\JSO`Ee+WOg}^�e+[EbP]Jomu�c)\�WC`EWC` {�c�b7Wq^G`+hOb
�.c�[EZCiC�q]+{w]J`Eb�U�eE]Tn�ZO\J\Jb�gO`E[{�ZO]Jb�Y7eEg7S���eEgCZ&kG~�bP\J]JeEWCg�SO`��wcCc)]�SC[ES��sgOe+~Pb�\J]�e+` {Ga�eE`Eh�UXWOYCZO[+bP]>^�WC\
c�\JWCnPb�]J]JeEgOi�xOe+[EeEgCiOZCSO[c)SC\�SC[E[Eb�[�`Eblkm`+Rr]JZOn�h�SC]jUXWCYOZC[Eb�] ^�WC\j]Jb�~Pb�\JSO[���eEgOYC]jWq^�a�WO\JY�SC[EeEiCgCU�b�gC`
SOgCYjYCSC`ESjiCbPgCb�\�SC`EeEWCg#^�\JWCU2c)SO\JSC[E[Eb�[m`Ebvkw`E]sSO]sa�bP[E[mSC]r`EWCWC[E]�^�WC\r`+hObTblkwSOUXeEgCSO`+eEWOgjSOgCY�b�~PSC[EZCSO`Ee+WOg
W_^�`+hOb�\�b�]JZO[+`E]s`+hOSC`wSO\Jb9c�\JWCYOZCnPb�YCo
�4� �¡�¢�£¥¤�¦�¢�£¥¡�§�¦#§9¨�©j¦�ª>«)¬#­>¡#®9§9¨

The Uplug-system was developed at Uppsala University within the on-going
PLUG project. The project’s aim is to develop, evaluate, and apply approaches to
generation of translation data from bilingual text (Ahrenberg et al. 1998).

The project is based on former studies on the extraction of translation equivalents,
which were carried out at the department of linguistics in Uppsala (Tiedemann
1997, 1998). Henceforth, these studies will be referred to as ̄�°0±O²T± study. A set of
tools and approaches for the work on textual data was implemented. The LexEx
study was based on investigations on Swedish, English and German parts of the
Scania95 corpus (Scania corpus homepage). The Scania95 corpus comprises a
collection of technical documentations in 8 European languages, which were
provided by the Scania CV AB in Södertälje/Sweden in 1995. The documents
were converted to TEI-conformant SGML (Tjong 1996a) and automatically
aligned on the sentence level (Tjong 1996b). Several command-line oriented
tools were developed in order to process and to query the Scania95 corpus. For
this purpose, a number of intermediate storage formats were created for efficiency
reasons. In the LexEx study an Uppsala-specific data format for sentence-aligned
bilingual texts were applied for further investigations (Uppsala align format).
Several approaches for the extraction of translation equivalents were developed
which were applied independently to the text collection. Each approach applied
several storage formats for the storage of intermediate results. Finally, bilingual

2 ³�´4µ;¶V·9¸¥¹>º#¹0»�¼4½#½

lexicon files were compiled as the result of the extraction process. These data
could be merged and presented in different forms by data conversion tools.
Conversion tools were developed in order to merge these data and to present them
in different formats.

With the start of the PLUG project, the co-operation between Linköping
University, the University of Gothenburg, and Uppsala University was initiated.
In the first stage, a common project corpus was established and aligned sentence-
wise. Each partner contributed parts of the corpus. The contributions were
encoded in different formats depending on the internal standard that were used at
each partner’s site. In the first step, a common corpus format was developed for
the consistent storage of sentence-aligned parallel texts. This encoding scheme is
based on XML and focused on the storage of bilingual texts. Conversion software
were written in order to handle all different formats that got involved in this
project. The number of scripts and tools for small tasks grew rapidly. In the end,
the LexEx software bundle comprised over 150 scripts and at least 10 different
formats were used for the storage of textual data.

The descriptions above imply the complexity and confusion of data formats and
software pieces that were collected in the LexEx study. More and more data was
generated by numerous experiments and the collection of results became difficult
to handle. The effort on conversion and data handling grew dramatically
compared to the work on actual extraction approaches. Furthermore, all
approaches to lexical extraction were developed independently and seem to drift
away from each other. The necessity of a common platform for the combination
of different approaches and the transparent management of textual data was
obvious. The system had to support several tasks:

• Data management: All necessary data format have to be supported
with a transparent1 interface. The system has to support standard
modes for accessing different sets of data, such as ‘write’ , ‘ read’ ,
‘search’ ‘add’ , and ‘delete’ . Furthermore, tools for conversions
between data formats have to be provided. The system has to
support the work on large data collections. Access to the data has to
be consistent and fast. The data management component has to be
extensible with regards to additional data formats and
supplementary functions.

• Application management: The system has to handle different
applications. Sub-tasks should be defined as modules that are re-
usable for various applications. The system has to provide
possibilities to change parameter settings and to modify the
architecture of the application itself. It has to be extensible and
flexible in order to integrate new modules and applications.
Processes have to be consistent and robust.

• User interaction: An appropriate user interface has to be integrated
in order to provide tools for investigations on test data, intermediate

¾r¿�À Á�ÂÄÃ	ÅjÆ�Ç�È�Á�À|Å-É�Ê�Ç4Év¿�Á�Ë7Ì¥Ç�Ç.À_Í Ç4Ér¿�Å4ÉmÅ�À¥À|ÎOÀOÊ Ç4Év¿�Ç-ÉCÅ
 3

data, and final results. Furthermore, the user must have possibilities
to control each application by adjusting parameter settings.
Corresponding tools for the modification of configurations have to
be included. The interface should be easy to use and it should
include utilities for different kinds of investigations on textual data.

There are several approaches that focus on the integration of general software
modules in the field of language engineering. However, these products tend to be
fixed to a certain database format as in the General Architecture for Text
Engineering (GATE) (Cunningham et al. 1996) that applies the TIPSTER
architecture (Grishman 1997) or as in the CELLAR environment (Simons &
Thomson 1995) from the Summer Institute of Linguistic, which applies a specific
internal format. Other approaches propose collections of tools for the work with
certain encoding standards such as TEI SGML as in the MULTEXT project
(Thompson & McKelvie 1996). However, general data architectures often
decrease the efficiency of specialized modules. Each sub-task has to be adapted
for the usage of the general architecture, which may include a certain overhead
that is not needed for this specific task. Therefore, it was decided to develop a
new platform for the integration of text processing modules, which supports
different data formats that are suitable to specific modules. This toolbox will be
referred to as Uplug system in the following.

Ï�Ð Ñ�Ò9ÓdÔ9Õ�ÖP×�ÓOØÚÙ#Û9Ü�Ý¥×�Ö�Þ7ß#Ø�à9ß#Û9Ó>Û9×�Ö

 In this section the architecture of the Uplug system and its components in
particular are introduced.
á�â�ã ä�å9ædç9è�éPê�æOë�é�ì2í�æOî>í�ï¥æ>ð

Mainly, the Uplug system is divided into three components. Each component is
designed to be extensible and applicable for several purposes. The components
are in particular:

• UplugIO - an extensible and transparent I/O interface
• UplugSystem - a launcher for sequences of Uplug modules
• UplugGUI - a graphical user interface for Uplug components

An overview on the system is shown in figure 1. The figure illustrates two
integrated applications (Uplug system 1 and Uplug system 2), which are
connected to the systems I/O interface and to the graphical user interface. Each
application comprises a sequence of modules that perform specific tasks.
Furthermore, system 1 includes a loop that iterates the process between module 1
and 3. Each module accesses data collections via the transparent UplugIO
component, which is connected to a set of I/O libraries for different data storage
formats.

4 ñ�ò4ó;ôVõ9ö¥÷>ø#÷0ù�ú4û#û

Uplug system 1 Uplug system 2

UplugIO

JTDB

DBI

Link
Align

XML Upp
Align

Goth
Align

...

mSQL mySQL ...?

modul 1 modul 2 modul 3

UplugGUI

DBM ...

modul 1 modul 2

Figure 1. Overview of the Uplug system

Each component will be described in detail in the following sections. However,
the general Uplug format for configuration data will be introduced first.
ü�ýEü þ7ÿ����������
	���
��|ÿ������������

All components of the Uplug system apply a general structure for storing system
specific parameters (henceforth UplugIni format). This format is supported by
special I/O functions, which are integrated in the system. The UplugIni format is
readable by humans and straightforward in its structure. Parameter settings are
defined in three hierarchies: A parameter ��������������� , which includes a set of �!
"
#$�%�&�'�(�)�*�+,' � that contain -�.�/�0�1
2�.�3�450�2�1
6�0�1�2�.�4 in form of pairs of features and their
associated values. In this way, classified parameter settings can be defined.
Configurations can be extended and modified easily. UplugIni files can be created
and modified with common text editors due to the straightforward format. It is
possible to add comments and to include external files. Consider the example in
figure 1 that illustrates an example of a configuration structure.

7�8:9 ;�<>=@?BA�C�DE;F9,?HGJIKCLGM8N;�OQP�C�CR9TSUCLG�8:?LGV?�9�9,W�9�IUCLGM8:CHGX?
 5

#--
stream format specifications
#--
#include (’/local/uplug/ini/PlugStream.ini’)

#--
collections of UplugIO functions
#--
[IO libraries]
 general
 file = ’(GeneralIO.pl,CollectionIO.pl)’
 corpora
 file = ’(UppsalaIO.pl)’
 file = ’(LinkoepingIO.pl,GoeteborgIO.pl)’
 file = ’(XMLIO.pl)’
 database
 file = ’(JTDB.pm)’
#--
define some data streams
#--
 [stream specifications]
 sven dictionary
 file = ’/local/uplug/data/ensv.dic’
 format = ’DBM’
 DBM type = ’GDBM’
 key = ’(source,target)’
 move feature = ’(source => temp)’
 move feature = ’(target => source)’
 move feature = ’(temp => target)’

Figure 2. A configuration file in Uplug format

UplugIni files follow a straightforward structure. Each line that starts with the
character ‘#’ is considered to be a comment line. However, the special command
‘#include’ forces the system to read the configuration file that is specified within
parentheses. Each line that starts with an opening bracket ‘ [‘ and ends with a
closing bracket ‘]’ starts a new YUZ�[,\^]N_L`Ma section with the name that is specified
within the brackets. Other lines that do not include the special character ‘=’ will
be interpreted as sub-category names. Features are specified in the current sub-
category that is defined in the current category. They start with a name, which has
to be unique in the current sub-category and their value is defined in single
quotation marks. Valid values include textual data, sequences of textual data or
sets of attribute-value pairs. A sequence can be defined on multiple lines with
each value enclosed in parentheses. Values in single line sets have to be separated
by ‘ ,’ . Both formats may be combined as well (consider the bKcLdMe:cLdVf feature in
figure 1). Sets of attribute value pairs have to be specified on multiple lines with

6 gKhLi5jlk
m�n�o�nqp�rLs�s

one pair each. The name of the attribute is separated from its value by the
character combination ‘=>’ .
t�uwv x:y
z|{Q}
~��
���!���Q����}
���
z��
�

The UplugIO component comprises a general toolbox for the integration of
different data formats and a set of I/O libraries for accessing specific data
collections.
���w�����������
�������U�Q�����
�����������
���

The general purpose of this component is to support the access to data collections,
which can be processed sequentially i.e. collections, which comprise sets of data
with similar structure. Data collections in this sense will be referred to as �����,�� � X¡��L¢ � . In general, data streams can be seen as sequences of data records. The
I/O component supports general functions for accessing data streams. The
following functions are available for each data stream format:

OpenStream
CloseStream
ReadFromStream
WriteToStream
UpdateStreamData
DeleteStreamData
SelectStreamData
SearchData

The functions above require a special parameter for specifying the stream that has
to be accessed. Data streams are simply specified by their format and format
specific attributes. All necessary specifications are collected in a special data
structure, which is used as handle when accessing the data stream. Once
specified, the internal structure of the data stream is not significant for the user
anymore. All access functions can be applied similarly regardless to the format of
the current stream. In this way, the user does not have to deal with internal
structures but is provided with a transparent interface for the work on data
collections.

The actual methods for accessing each particular stream type are implemented in
corresponding I/O libraries. The main component obtains the definitions for each
stream format in a special configuration file, £�¤¦¥ §�¨�©Lª¬«�­ ®F­ , and calls appropriate
functions if a specific stream is accessed. A basic stream format configuration has
to include a reference to an appropriate ¯ °L±N²F³ function as well as to an appropriate ´LµF¶ ·FµN¶ function. The other parts are replaced by default functions if not otherwise
specified. Input/Output functions provide sequential read/write access to the data
collection. These basic functions are applied in order to implement functions for
searching and updating the stream if no specialized functions are defined for the

¸�¹:º »�¼>½@¾B¿�À�ÁE»Fº,¾HÂJÃKÀLÂM¹N»�ÄQÅ�À�ÀRºTÆUÀLÂ�¹:¾LÂV¾�º�º,Ç�º�ÃUÀLÂM¹:ÀHÂX¾
 7

stream type. Figure 2 shows a typical stream format specification taken from the
UplugIO component.

 [format specifications]
 plug XML
 open stream function = ’OpenPlugXML’
 input function = ’ReadPlugXML’
 output function = ’WritePlugXML’
 write header function = ’WriteXMLheader’
 write tail function = ’WriteXMLtail’
 select from stream function = ’SelectFromPlugXML’
 functions = ’(count => DefaultCount)’
 files = ’(file)’
 required stream attributes = ’(format)’
 required stream attributes = ’(file)’

Figure 3. Data stream specifications

È�ÉwÊ�ÉwÈÌËQÍ�Î�Í>Ï5Î�Ð�Ñ�Í�ÒÔÓ�Õ�Ð�Ò�Í�Î�Ï

The UplugIO component supports several stream formats. They include
specialized formats that are closely related to specific tasks and general formats
for general purposes.

Due to the primary application of the Uplug system, the word alignment software,
a set of data collections is supported with regard to the data formats that were
used in the PLUG project. This includes among others the common XML-based
corpus format for bilingual parallel texts and the alignment formats, which are
specific to the partners sites. However, the stream accessing tools are designed to
be as general as possible and in this way additional stream formats can be
included easily.

General data formats that are supported by the Uplug system include interfaces to
standard database-management-tools such as SDBM and GDBM, which are
common on Unix-alike systems. These interfaces can be used to build simple and
fast databases of textual data. The basic database interface is used for several
specific applications that require specific data structures. In this way, a corpus
annotation stream is implemented, which applies Tipster-alike (Grishman 1998)
byte span structures in order to annotate sub-strings in the referred text corpus.
Another database interface provides the connection to relational database
management systems via the transparent DBI module (Descartes 1997) for Perl.
This interface (JTDB) can be seen as an independent database toolbox, which was
integrated in the Uplug environment. It provides simple and transparent access to
structured data collections plus additional tools for database administration. The

8 ÖK×LØ5ÙlÚ
Û�Ü�Ý�ÜqÞ�ßLà�à

main principle in the JTDB interface is the automatic generation of appropriate
SQL queries with regards to a certain internal database structure.

Another feature of the UplugIO component is the possibility of combining data
streams into collections. A special stream format (á:â�ã�ã,ä^åUæ�ç,âHè) was created to
handle sets of data streams. In this way, several data streams can be merged
virtually and the user is provided with transparent access to the whole collection
similarly to single streams access. The data streams that are included in the
collection may be of any format that is supported by the UplugIO component.
Furthermore, any combination of stream formats may occur in the collection.

Last to be mentioned here is the possibility of pre-defined data streams.
Specifications of data streams can be added in the UplugIO.ini configuration file.
Once defined each pre-defined data stream can be referred to by its unique name
using the ‘stream name’ attribute. This is a very convenient way to provide the
user with a comprehensible name instead of stream and storage specific attributes.
Figure 3 shows a short example of pre-defined data streams from the Uppsala
Word Aligner.

[stream specifications]
 svenprf
 format = ’plug XML’
 file = ’/corpora/PLUG/XML/svenprf.xml’
 svenpeu
 file = ’/corpora/PLUG/XML/svenpeu.xml’
 format = ’plug XML’
 svenp[a-z]+
 format = ’Collection’
 stream names = ’(svenprf)’
 stream names = ’(svenpeu)’

Figure 4. Pre-defined data streams

é�êwë ì:í
î|ïQð
ñ�ò
ó�ô
õ�ö5÷�î�øúùQû�ø�ð
û�ü
î�ü
÷

The Uplug system intends to combine re-usable modules in order to build special-
task applications. Regarding to the idea of the Uplug platform a module can be
any external software tool that performs a specific task. In the current stage, the
system supports externally executables, perl scripts, and function calls to Perl
libraries to be integrated in Uplug applications. Sub-task modules have to be
combined in order to build applications of higher complexity. The UplugSystem
component provides tools for the construction of complex applications by
defining ordered sequences of modules.

ý�þ:ÿ ���������
	����Fÿ
������	��Mþ�������	�	Rÿ���	���þ�������ÿ�ÿ
��ÿ���	��Mþ�	�� �
 9

 [modules]
 tokenize
 command = ’Tokenize’
 configuration = ’Tokenize.ini’
 filename = ’Tokenize.pl’
 type = ’perl lib’
 compile phrases
 command = ’CompilePhrases’
 configuration = ’CompPhrases.ini’
 directory = ’local/uplug/Modules/’
 type = ’perl script’
 extract phrases (source)
 command = ’PhraseExtract’
 configuration = ’SourcePhraseExtract.ini’
 filename = ’PhraseExtract.pl’
 type = ’perl lib’
 segmentation
 command = ’FindLinkSegment’
 configuration = ’Segmentation.ini’
 filename = ’Segmentation.pl’
 type = ’perl lib’
 phrase generator
 command = ’Uplug.pl "phrase generation"’
 directory = ’/local/uplug/bin/’
 type = ’perl script’
[systems]
 post-processing
 configdir = ’./Systems/Scania/sven/Prepare/’
 logfile = ’PreProc.log’
 logfiledir = ’./log/Scania/sven/’
 modules = ’(tokenize)’
 modules = ’(phrase generator)’
 modules = ’(segmentation)’
 skip modules = ’(phrase generator)’
 write logfile = ’1’
 phrase generation
 configdir = ’./Systems/Scania/sven/CompPhrases/’
 logfile = ’CompilePhrases.log’
 logfiledir = ’./log/Scania/sven/’
 modules = ’(compile phrases)’
 modules = ’(extract phrases (source))’
 write logfile = ’1’

Figure 5. Specifications of Uplug systems

Each module has to be defined in the !#"�$ %�&�')(*+(configuration file. The definitions
have to follow a certain syntax depending on the module type. A basic Uplug
application is defined by a sequence of identifiers that refer to module names in
the set of module specifications. Additional parameters can be added such as log-
file names and skip definitions for the omission of certain modules. Finally, each

10 ,�-�.0/2143�57685:9
;�<8<

application can be started and the Uplug system is running each module in the
sequence starting with the first one in the sequence. The system will stop when
the last module is finished. Furthermore, an end module can be specified in order
to stop the process at a certain point in the application. Figure 5 shows a sample
of a UplugSystem configuration.

The example of a UplugSystem specification in figure 5 presents a simple
definition of two Uplug applications, which apply five modules. The first
application (=?>�@�A BC=�D�>�E�FG@0@�H I8J) is defined by a sequence of the three modules KML8NPO7Q4R�S0OUTWV4X4Y7Z8[0\^]�\�_4\7Y�Z�`)a�YUbdcfe7g�hie7j4k)l�k)m�n�j

. Parameter settings for each
module in the system are stored in the configuration directory (o�p�q)r�s t+u�s v) and the
log-file (w�x�y)z�{�w
|) will be created in the log-file directory (}�~����8��}
����� �). The second
module in this system shows the possibilities of defining sub-systems. The
‘�+��� ��� ���+�:���G� �8�
��� ’ module calls in fact another instance of a Uplug process in
order to run the second application, the ‘�+������� ���+�:���G� �8�
����� ’ . The ‘phrase
generation’ system itself includes two modules, which will be run in the sub-
system call. In this simple way, hierarchies of Uplug systems can be defined
easily.

As mentioned earlier, a module can be mainly any kind of executable or script
that can be run on the system. However, each module should fit in the application
it is part of. The Uplug system is designed to be as general as possible and
therefore no restrictions were defined for the integration of additional modules.
The compilation of applications is up to the user. Consistency of interactions
between modules is not guaranteed by the system. Each module can be
completely independent from any Uplug component. The most basic Uplug
application is simply a batch process of different programs. However, integrated
modules may use Uplug components for the interaction with each other. Modules
runs separately. Interactions are defined by means of data that are produced in
each step. Interactions between modules can be supported via the UplugIO
component and a straightforward configuration structure. Each module in the
Uplug environment may use a simple parameter file, which is structured as
follows:

1. Configurations are stored by means of UplugIni structures.
2. The configuration file includes

• an ‘ input’ category for the specification of input data streams
• an ‘output’ category for the specification of output data

streams
• a ‘parameter’ category for the specification of module specific

parameters

In Figure 6 a simple example of such module configuration file is shown.

UplugIni files are very convenient for storing parameter settings for single
modules. The structure is compatible with the UplugIO component. The data

�#��� �� �¡�¢�£
¤�¥��+�
¢�¦�§�¤�¦¨����©�ª�¤�¤«��¬�¤�¦#��¢�¦�¢����
­���§�¤�¦¨��¤�¦ ¢
 11

stream specifications can be applied directly in order to access corresponding data
collections. Pre-defined streams can be used and parameters can be ordered in
hierarchies. Each sub-category name in the input/output sections defines a unique
identifier for each stream within the current application. Data stream
specifications are taken from previous specifications in the sequence of modules
if they refer to the same identifier. In this way, standard configurations can be
defined for specific modules that can be applied for different Uplug applications.

[input]
 corpus
 stream name = ’corpus (stem forms)’
[output]
 source token frequencies
 stream name = ’source token frequencies’
 target token frequencies
 stream name = ’target token frequencies’
[parameter]
 lower case
 source = ’1’
 target = ’1’
 runtime
 print progress = ’1’
 stemmer
 source = ’sv’
 target = ’en’
 token
 delimiter = ’ ’
 grep = ’contains_alphabetic’

Figure 6. An example of a module configuration file

The configuration format is also supported by the graphical user interface
UplugGUI. Using UplugIni files, each data stream can be inspected and
parameters can be set via the interface.

The UplugSystem component supports iterative processing. Each system may
include a loop in the sequence of modules. Loops are defined by specifying the
index of the start module (®�¯�¯�°²± ³�´�µ ³), the index of the end module (¶�·�·)¸º¹:»+¼), and
the number of iterations (½�¾�¾�¿ÁÀ
Â�Ã:Ä�Å�Â�À
¾�Æ�Ç) that have to be carried out. Further
interior loops can be added by defining appropriate sub-systems.

È�ÉËÊ Ì�Í4ÎÐÏ�Ñ4Ò�Ó4Ô�ÕÖÏ�×ÙØ�Ú�Û
Ñ#Ú�Ü4Î�Ü4Ý

The Uplug system provides a graphical user interface for the work with Uplug
applications. This interface is window and mouse oriented based on Perl/Tk
scripts. It comprises various tools for the construction, configuration, and

12 Þ�ß�à0á2â4ã�ä7å8ä:æ
ç�è8è

application of Uplug systems. The actual appearance of the interface depends on
information in corresponding configuration files. It can be adjusted by modifying
appropriate parameters. In this way, the main menu can be modified, pre-defined
streams can be set, and parameter types and options can be defined. The main
window displays the sequence of modules of the current application. The
UplugGUI uses information from configuration files if they exist for a specific
module. It provides convenient tools for the adjustment of parameters. For this,
standard Tk widgets are used to set parameter values according to the type and
widget specifications that are defined in the UplugGUI configuration. The widget
type can be specified in the module configuration file as well. Each parameter can
be associated with a certain type in the ‘ éëê
ì�í�î�ï ð ’ category. Figure 6 illustrates the
widget specification from a typical module configuration file.

 [widgets]
 runtime
 print progress = ’checkbox’
 token
 delimiter = ’entry’
 grep = ’optionmenu
(numeric,alphabetic,contains_alphabetic)’
 minimal length = ’scale (1,10,1,1)’
 token pair
 maximal distance = ’scale (1,20,1,1)’
 minimal frequency = ’scale (1,10,1,1)’
 minimal length difference = ’scale (1)’

Figure 7. Specifications of parameter widgets in module configuration files

The current version of the UplugGUI supports four different widgets:

• Entry widgets for simple textual data
• Checkboxes for boolean flags
• Option-menus for selecting values from a certain set of options
• Scales for numeric parameters with valid values in a certain range

The UplugGUI creates widgets according to the specification that were found.
The default type is the entry field, which will be created for each parameter that is
not otherwise specified. Furthermore, command buttons can be added to specific
attributes as well. In this way, additional tools can be used for setting specific
parameters such as file dialogs for setting name and location of file parameters.
Figure 8 shows two screen shots of such parameter configuration dialogues.

ñ#ò�ó ô�õ�ö�÷�ø
ù�ú�ô+ó
÷�û�ü�ù�û¨ò�ô�ý�þ�ù�ù«ó�ÿ�ù�û#ò�÷�û�÷�ó�ó���ó�ü�ù�û¨ò�ù�û ÷
 13

Figure 8. Setting parameters with the UplugGUI

Another feature of the UplugGUI is the possibility of inspecting data streams.
Each stream, which is defined in a module configuration file, can be inspected by
simply clicking on corresponding buttons in the main window. Furthermore, it is
possible to open any Uplug data stream from the interface by specifying
corresponding attributes. The system creates data windows that list sequentially
read data records. In the data window tools are provided to query the collection
and to store data records in different formats at new locations. In this way,
intermediate results from each module can be inspected even if the application is
still in progress. Data collections can be converted easily and prepared for
specific investigations.

Finally, Uplug applications can be certainly started from the graphical interface.
Depending on the configuration the process will be started using a system shell.
In multi-task environments, the process may run in the background. In this way,
several applications may be started simultaneously from the user interface.
However, interactions between different processes have to be considered. The
system does not support any consistency checks so far.

��� ���	��

�����������������������������

The primary application of the Uplug system so far is the Uppsala Word
Alignment (UWA). In this application, bilingual parallel texts are processed in
order to identify translation equivalents in parallel texts. The UWA can be used to
mark all correspondences that could be identified in the text or to extract bilingual
lexicons from the text corpus. The system assumes sentence aligned text corpora

14 � �"!$#&%�'�(�)�(+*
,"-�-

and runs through a sequence of modules and sub-systems. A special focus in the
design of the UWA was set on modularity. The word alignment process may
combine different sequences of sub-task modules. Figure 9 illustrates the main
architecture of the UWA. It represents one possible combination of modules for a
word alignment application. Each module performs a specific task. They can be
removed, substituted by new modules, and additional modules may be included in
order to create modified alignment applications.

1. pre-processing
• tokenization
• generation of multi-word collocations (source & target

language)
• text segmentation (identification of multi-word units in the

text)
2. investigations on string similarity

• the longest common subsequence ratio (LCSR)
• weighted LCSR

3. stemming (reducing words to stem forms)
4. co-occurrence statistics

• frequencies counts (token frequencies, co-occurrence
frequencies)

• calculation of co-occurrence statistics (Dice, Mutual
information, t-score)

• investigations on low frequent pairs
5. word and multi-word alignment
6. automatic filtering
7. compilation of a bilingual dictionary
8. iteration: continue with module 3

Figure 9. The UWA system

Although the UWA is the main application of the Uplug system, additional
systems were developed on the same platform. They apply different components
and carry out various tasks related to text corpus processing. Among them, parts
of the UWA are used as separate systems. Uplug applications include systems for

• phrase generation (based on the compilation of contiguous
collocations)

• text segmentation (including tokenization and identification of multi-
word-units)

• alignment evaluation based on a gold standard
• bilingual concordances (applying the UplugIO component)
• the work with lexical databases (applying UplugIO)

.�/�0 1�2436587
9�:;1<0�5>=@? 9"=A/B1�C�D�9�9	0FEG9"=�/�5"=H5�0�0�IJ0J?G9"=A/�9>=K5
 15

L�M N�O�P�Q�R�S�T$U�O�P�T

The Uplug-system including its main application, the Uppsala Word Aligner,
represents Uppsala’s contribution to the common word alignment system, which
is currently under development. The purpose with this software is to provide a
modular platform for the integration of text processing tools. Special attention is
given to the development of a general system that supports further extensions.
The current version of the Uplug-system, however, is intended for processing
bilingual texts from the project’s corpus. A special focus was set on the
integration of different storage formats. The system is supposed to support access
to different data formats instead of creating a new internal structure that has to be
used by each application. In this way, existing storage standards can be applied
by corresponding applications and data conversions can be avoided. Specific data
formats are often optimised for certain tasks. Keeping the same format increases
the time efficiency of sub-tasks. The system is designed to be very general and it
allows comprehensive modifications in its configuration. No explicit restrictions
were defined for the integration of modules. Due to this fact, the consistency in
Uplug applications is very much up to the user that created certain applications.
The system is still under development and a prototype is currently applied for
specific tasks. In future, additional applications and further data formats will be
integrated in the system.

The Uplug system represents an applicable platform for extensive investigations
on textual data. It provides a general and extensible architecture with an
integrated user interface and a multi-purpose data interface. Its main application
is focused on the extraction of information from large text collections, in
particular multi-lingual parallel texts.

V�W�XZY�[

1 Transparency in this sense means the invisibility of internal structures for
the user.

\�]�^Z]�_J]�`�aJ]�b

Ahrenberg, L., M. Merkel, K. Mühlenbock, D. Ridings, A. Sågvall Hein and J.
Tiedemann (1998), ‘Parallel corpora in Linköping, Uppsala and Göte-
borg’ c Project application, available at http://stp.ling.uu.se/ ~corpora/plug/.

Cunningham, H., Y. Wilks, R. J. Gaizauskas (1996), ‘Software Infrastructure for
Language Engineering’ , in: dfeKg>hGi�iJj�k l�m�nogqpsr tBivu�wZx�y{z|g"e~}�n$t<gZ��g"l�@� l�m�� � m<i��fl�mBk lBiJi+eKk l�m�pGg"e��
g"h����
i+l<r�u�l ��� � nHk n � lBj���i+h g"m�lBk�r�k�g"l ,
University of Sussex.

Descartes, A. (1997), ‘DBI: The Database Interface’ � ���B�����+�H��� �"���$�B��� , Issue 5.

16 � �"�$ &¡�¢�£�¤�£+¥
¦"§�§

Grishman, R. (1998), ‘TIPSTER Text Architecture Design, Version 3.1’ , New
York University, available at http://www.itl.gov/iaui/894.02
/related_projects/tipster/download.htm

Simons, G. F. and J. V. Thomson (1995), ‘Multilingual data processing in the
CELLAR environment’ , in: ¨ª© «�¬�­B© ®K¯�© °²±
³�¯�³�´�³"®Hµ+® , University of
Groningen, Centre for Language and Cognition and Centre of Behavioural
and Cognitive Nerosciences

Tiedemann, J. (1997), ‘Automatical lexicon extraction from aligned bilingual
corpora’ . Diploma thesis, Otto-von-Guericke-University, Magdeburg,
Department of Computer Science.

Tiedemann, J. (1998), ‘Extraction of translation equivalents from parallel
corpora’ , in: ¶�·K¸"¹ º�ºJ»�¼ ½�¾�¿|¸�ÀÂÁ ÃBº�Ä�Ä�Å ÆÈÇ|É"ÊKË�Ì ÍÂÎ�É>ÏZÐGÑ+ÊKÑÒÏ�Í ÑÓÉ>ÏÔÎ�É"ÕªÖB×<Ø�Ù�Ø�Ì�É"Ï<Ù�ÚÛ Ì Ï�Ü�×BÌ ÝKØ�Ì ÍJÝ , Copenhagen 28-29 January 1998 (NODALIDA’98), Center
for Sprogteknologi, University of Copenhagen. 120–128.

Tjong Kim Sang, E. (1996a), ‘Converting the Scania Framemaker documents to
TEI SGML’ Þ Technical report, Department of Linguistics, Uppsala
University.

Tjong Kim Sang, E. (1996b), ‘Aligning the Scania corpus’ ß Technical report,
Department of Linguistics, Uppsala University.

Thompson, H and D. McKelvie. (1996), ‘A software architecture for simple,
efficient SGML applications’ , in: àfáHâ"ãGäJä�å�æ ç�è�éêâqëíìBîªïñðóòfô�áHâZõ�ä ‘ öB÷ ,
Munich.

