

Advanced PCFG Models

Sara Stymne

Syntactic Parsing 2023

Slides partly from Joakim Nivre

Advanced PCFG Models 1(15)

- 1. Problems with Treebank PCFGs
- 2. Parent Annotation
- 3. Lexicalization
- 4. Markovization
- 5. Latent Variables
- 6. Other Parsing Frameworks

Advanced PCFG Models 2(15)

Lack of Sensitivity to Structural Context

Tree Context	NP PP DT NN		PRP
Anywhere	11%	9%	6%
NP under S	9%	9%	21%
NP under VP	23%	7%	4%

Advanced PCFG Models 3(15)

Lack of Sensitivity to Lexical Information

S	\rightarrow	NP VP PU	1.00
VP	\rightarrow	VP PP	0.33
VP	\rightarrow	VBD NP	0.67
NP	\rightarrow	NP PP	0.14
NP	\rightarrow	JJ NN	0.57
NP	\rightarrow	JJ NNS	0.29
PP	\rightarrow	IN NP	1.00
ΡU	\rightarrow	·	1.00
JJ	\rightarrow	Economic	0.33
JJ	\rightarrow	little	0.33
JJ	\rightarrow	financial	0.33
NN	\rightarrow	news	0.50
NN	\rightarrow	effect	0.50
NNS	\rightarrow	markets	1.00
/BD	\rightarrow	had	1.00
IN	\rightarrow	on	1.00

Parent Annotation

Replace nonterminal A with A^B when A is child of B.

Advanced PCFG Models 5(15)

Parent Annotation

Replace nonterminal A with A^B when A is child of B.

Also referred to as vertical markovization

Advanced PCFG Models 5(15

Lexicalization

Nonterminals:
$$N_{lex} = \{A(a) \mid A \in N, a \in \Sigma\}$$

Rules: $A(a) \rightarrow \dots B(a) \dots$
 $A(a) \rightarrow a$

Advanced PCFG Models 6(15)

Smoothing of the Lexicalized PCFG

$$q = Q(A(a) \rightarrow B(b) C(a))$$

$$= P(A \rightarrow_2 B C, b | A, a)$$

$$= P(A \rightarrow_2 B C | A, a) \cdot P(b | A \rightarrow_2 B C, a)$$

$$q_1 = P(A \rightarrow_2 B C | A, a)$$

$$\approx \lambda \frac{\text{COUNT}(A \rightarrow_2 B C, a)}{\text{COUNT}(A, a)} + (1 - \lambda) \frac{\text{COUNT}(A \rightarrow_2 B C)}{\text{COUNT}(A)}$$

$$q_2 = P(b | A \rightarrow_2 B C, a)$$

$$\approx \lambda \frac{\text{COUNT}(b, A \rightarrow_2 B C, a)}{\text{COUNT}(A \rightarrow_2 B C)} + (1 - \lambda) \frac{\text{COUNT}(b, A \rightarrow_2 B C)}{\text{COUNT}(A \rightarrow_2 B C)}$$

Advanced PCFG Models 7(15)

Non-lexicalized CKY Parsing

```
PARSE(G, x) for j from 1 to n do for all A: A \to x_j \in R  \mathcal{C}[j-1,j,A] := \mathcal{Q}(A \to x_j) for j from 2 to n do for i from j-2 downto 0 do for k from i+1 to j-1 do for all A \to BC \in R and \mathcal{C}[i,k,B] > 0 and \mathcal{C}[k,j,C] > 0 if (\mathcal{C}[i,j,A] < \mathcal{Q}(A \to B \ C) \cdot \mathcal{C}[i,k,B] \cdot \mathcal{C}[k,j,C]) then  \mathcal{C}[i,j,A] := \mathcal{Q}(A \to B \ C) \cdot \mathcal{C}[i,k,B] \cdot \mathcal{C}[k,j,C]  return \mathsf{BUILD\text{-}TREE}(\mathcal{B}[0,n,S])
```

Advanced PCFG Models 8(15)

Lexicalized CKY Parsing

```
PARSE(G, x)
for i from 1 to n do
   for all A: A(x_i) \rightarrow x_i \in R
       C[j-1,j,j,A] := Q(A(x_i) \rightarrow x_i)
for i from 2 to n do
   for i from i-2 downto 0 do
       for k from i + 1 to i - 1 do
           for h from i + 1 to k do
               for m from k + 1 to i do
                   for all A: A(x_h) \to B(x_h)C(x_m) \in R and C[i, k, h, B] > 0 and C[k, j, m, C] > 0
                       if (C[i, j, h, A] < Q(A(x_h) \rightarrow B(x_h)C(x_m)) \cdot C[i, k, h, B] \cdot C[k, j, m, C]) then
                          C[i, j, h, A] := Q(A(x_h) \rightarrow B(x_h)C(x_m)) \cdot C[i, k, h, B] \cdot C[k, j, m, C]
                           B[i, i, h, A] := (k, B, h, C, m)
           for h from k + 1 to j do
               for m from i + 1 to k do
                   for all A: A(x_h) \to B(x_m)C(x_h) \in R and C[i, k, m, B] > 0 and C[k, i, h, C] > 0
                       if (C[i, i, h, A] < Q(A(x_h) \rightarrow B(x_m)C(x_h)) \cdot C[i, k, m, B] \cdot C[k, i, h, C]) then
                          C[i, i, h, A] := Q(A(x_h) \rightarrow B(x_m)C(x_h)) \cdot C[i, k, m, B] \cdot C[k, i, h, C]
                          \mathcal{B}[i, j, h, A] := (k, B, m, C, h)
```

return $\max_h C[0, n, h, S]$, BUILD-TREE($\mathcal{B}[0, n, \operatorname{argmax}_h C[0, n, h, S], S]$)

Advanced PCFG Models 9(15)

Complexity

- ► Two extra loops in the algorithm, for the head of left and right trees
- ► Complexity is thus $O(n^5)$ instead of $O(n^3)$
- ► Too slow for many practical applications
- Pruning techniques often used
 - Means that we do not necessarily find the best tree, even given our model

Advanced PCFG Models 10(15)

Horisontal Markovization

```
N-ary rule:  VP \to VB \ NP \ PP \ PP  No limit (h = \infty):  VP \to \langle VP:[VB] \ NP \ PP \ PP \rangle  \langle VP:[VB] \ NP \ PP \ PP \rangle \to \langle VP:[VB] \ NP \ PP \rangle \ PP  \langle VP:[VB] \ NP \ PP \rangle \to \langle VP:[VB] \ NP \rangle \ PP  \langle VP:[VB] \ NP \rangle \to \langle VP:[VB] \rangle \ NP  \langle VP:[VB] \rangle \to VB
```

First-order markovization (h = 1):

```
\begin{array}{cccc} & \mathsf{VP} & \to & \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle \\ \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle & \to & \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle \ \mathsf{PP} \\ \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle & \to & \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{NP} \rangle \ \mathsf{PP} \\ \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{NP} \rangle & \to & \langle \mathsf{VP}{:}[\mathsf{VB}] \rangle \ \mathsf{NP} \\ & \langle \mathsf{VP}{:}[\mathsf{VB}] \rangle & \to & \mathsf{VB} \end{array}
```

Advanced PCFG Models 11(15

Latent Variables

- Extract treebank PCFG
- ► Repeat *k* times:
 - 1. Split every nonterminal A into A_1 and A_2 (and duplicate rules)
 - 2. Train a new PCFG with the split nonterminals using EM
 - 3. Merge back splits that do not increase likelihood

Advanced PCFG Models 12(15

Some Famous (Pre-neural) Parsers

	Par	Lex	Mark	Lat
Collins	+	+	+	_
Charniak	+	+	+	_
Stanford	+	_	+	_
Berkeley	+	_	+	+

Advanced PCFG Models 13(15)

Other Parsing Frameworks

- ► Shift-reduce parsing (transition-based)
 - Does not need a chart
 - ► Greedy
 - Linear time complexity
- Neural networks in parsing
 - ► Can reduce independence assumptions
 - ► Often not grammar-based, but letting the neural networks score all possible phrases (e.g. span-based parsing)
 - Typically gives better results

Other Parsing Frameworks

- ► Shift-reduce parsing (transition-based)
 - Does not need a chart
 - Greedy
 - Linear time complexity
- Neural networks in parsing
 - ► Can reduce independence assumptions
 - ► Often not grammar-based, but letting the neural networks score all possible phrases (e.g. span-based parsing)
 - Typically gives better results
- ▶ The first seminar will cover a transition-based neural model

Advanced PCFG Models 14(15)

Next

- Wednesday
 - ► Seminar 1 (see groups on web page)
 - Supervision
- ► Project web page is now up!

Next

- Wednesday
 - ► Seminar 1 (see groups on web page)
 - Supervision
- Project web page is now up!
- ► Now: supervision

Advanced PCFG Models 15(15)