

Advanced PCFG Models

Sara Stymne

Syntactic Parsing 2023

Slides partly from Joakim Nivre

- 1. Problems with Treebank PCFGs
- 2. Parent Annotation
- 3. Lexicalization
- 4. Markovization
- 5. Latent Variables
- 6. Other Parsing Frameworks

Lack of Sensitivity to Structural Context

Lack of Sensitivity to Lexical Information

Parent Annotation

Replace nonterminal A with AˆB when A is child of B.

Parent Annotation

Replace nonterminal A with AˆB when A is child of B.

Also referred to as vertical markovization

Lexicalization

Smoothing of the Lexicalized PCFG

$$
q = Q(A(a) \rightarrow B(b) C(a))
$$

= $P(A \rightarrow_2 B C, b | A, a)$
= $P(A \rightarrow_2 B C | A, a) \cdot P(b | A \rightarrow_2 B C, a)$

$$
q_1 = P(A \rightarrow_2 B C | A, a)
$$

$$
\approx \lambda \frac{\text{count}(A \rightarrow_2 B C, a)}{\text{count}(A, a)} + (1 - \lambda) \frac{\text{count}(A \rightarrow_2 B C)}{\text{count}(A)}
$$

$$
\begin{array}{lcl} q_2 & = & P(\mathsf{b} \, | \, \mathsf{A} \to_2 \mathsf{B} \, \mathsf{C}, \mathsf{a}) \\ & \approx & \lambda \frac{\mathrm{count}(\mathsf{b}, \mathsf{A} \to_2 \mathsf{B} \, \mathsf{C}, \mathsf{a})}{\mathrm{count}(\mathsf{A} \to_2 \mathsf{B} \, \mathsf{C}, \mathsf{a})} + (1-\lambda) \frac{\mathrm{count}(\mathsf{b}, \mathsf{A} \to_2 \mathsf{B} \, \mathsf{C})}{\mathrm{count}(\mathsf{A} \to_2 \mathsf{B} \, \mathsf{C})} \end{array}
$$

Non-lexicalized CKY Parsing

PARSE(G, x) for j from 1 to n do for all $A: A \rightarrow x_i \in R$ $\mathcal{C}[j-1,j,A] := Q(A \to x_j)$ for j from 2 to n do for i from $j - 2$ downto 0 do for k from $i + 1$ to $j - 1$ do for all $A \rightarrow BC \in R$ and $C[i, k, B] > 0$ and $C[k, j, C] > 0$ if $(C[i, j, A] \le Q(A \rightarrow B C) \cdot C[i, k, B] \cdot C[k, j, C])$ then $C[i, j, A] := Q(A \rightarrow B C) \cdot C[i, k, B] \cdot C[k, j, C]$ $\mathcal{B}[i, j, A] := (k, B, C)$ return BUILD-TREE $(B[0, n, S])$

Lexicalized CKY Parsing

PARSE(G, x) for j from 1 to n do for all $A: A(x_j) \rightarrow x_j \in R$ $C[j-1,j,j,A] := Q(A(x_j) \rightarrow x_j)$ for j from 2 to n do for i from $i - 2$ downto 0 do for k from $i + 1$ to $i - 1$ do for h from $i + 1$ to k do for m from $k + 1$ to i do for all $A: A(x_h) \to B(x_h)C(x_m) \in R$ and $C[i, k, h, B] > 0$ and $C[k, j, m, C] > 0$ if $(C[i, j, h, A] < Q(A(x_h) \rightarrow B(x_h)C(x_m)) \cdot C[i, k, h, B] \cdot C[k, j, m, C])$ then $C[i, j, h, A] := Q(A(x_h) \to B(x_h)C(x_m)) \cdot C[i, k, h, B] \cdot C[k, j, m, C]$ $B[i, i, h, A] := (k, B, h, C, m)$ for h from $k + 1$ to j do for m from $i + 1$ to k do for all $A: A(x_h) \to B(x_m)C(x_h) \in R$ and $C[i, k, m, B] > 0$ and $C[k, j, h, C] > 0$ if $(C[i, j, h, A] < Q(A(x_h) \rightarrow B(x_m)C(x_h)) \cdot C[i, k, m, B] \cdot C[k, j, h, C])$ then $C[i, j, h, A] := Q(A(x_h) \to B(x_m)C(x_h)) \cdot C[i, k, m, B] \cdot C[k, j, h, C]$ $B[i, i, h, A] := (k, B, m, C, h)$ return max_h C[0, n, h, S], BUILD-TREE($\mathcal{B}[0, n, \text{argmax}_h C[0, n, h, S], S]$)

Complexity

- \triangleright Two extra loops in the algorithm, for the head of left and right trees
- ▶ Complexity is thus $O(n^5)$ instead of $O(n^3)$
- \triangleright Too slow for many practical applications
- \blacktriangleright Pruning techniques often used
	- \blacktriangleright Means that we do not necessarily find the best tree, even given our model

Horisontal Markovization

N-ary rule:

 $VP \rightarrow VB NP PP PP$

No limit $(h = \infty)$:

$$
\begin{array}{ccc}\n & \text{VP} & \rightarrow & \langle \text{VP}:\text{[VB]} \text{ NP PP PP} \rangle \\
\langle \text{VP}:\text{[VB]} \text{ NP PP PP} \rangle & \rightarrow & \langle \text{VP}:\text{[VB]} \text{ NP PP} \rangle \text{ PP} \\
& \langle \text{VP}:\text{[VB]} \text{ NP PP} \rangle & \rightarrow & \langle \text{VP}:\text{[VB]} \text{ NP} \rangle \text{ PP} \\
& \langle \text{VP}:\text{[VB]} \text{ NP} \rangle & \rightarrow & \langle \text{VP}:\text{[VB]} \rangle \text{ NP} \\
& \langle \text{VP}:\text{[VB]} \rangle & \rightarrow & \text{VB}\n\end{array}
$$

First-order markovization $(h = 1)$:

$$
\begin{array}{ccc}\n & \text{VP} & \rightarrow & \langle \text{VP}:\text{[VB]} \dots \text{PP} \rangle \\
\langle \text{VP}:\text{[VB]} \dots \text{PP} \rangle & \rightarrow & \langle \text{VP}:\text{[VB]} \dots \text{PP} \rangle \text{ PP} \\
\langle \text{VP}:\text{[VB]} \dots \text{PP} \rangle & \rightarrow & \langle \text{VP}:\text{[VB]} \dots \text{NP} \rangle \text{ PP} \\
\langle \text{VP}:\text{[VB]} \dots \text{NP} \rangle & \rightarrow & \langle \text{VP}:\text{[VB]} \rangle \text{ NP} \\
& \langle \text{VP}:\text{[VB]} \rangle & \rightarrow & \text{VB}\n\end{array}
$$

Latent Variables

- Extract treebank PCFG
- \blacktriangleright Repeat *k* times:
	- 1. Split every nonterminal A into A_1 and A_2 (and duplicate rules)
	- 2. Train a new PCFG with the split nonterminals using EM
	- 3. Merge back splits that do not increase likelihood

Some Famous (Pre-neural) Parsers

Other Parsing Frameworks

- \triangleright Shift-reduce parsing (transition-based)
	- \triangleright Does not need a chart
	- \blacktriangleright Greedy
	- \blacktriangleright Linear time complexity
- \blacktriangleright Neural networks in parsing
	- \blacktriangleright Can reduce independence assumptions
	- \triangleright Often not grammar-based, but letting the neural networks score all possible phrases (e.g. span-based parsing)
	- \blacktriangleright Typically gives better results

Other Parsing Frameworks

- \triangleright Shift-reduce parsing (transition-based)
	- \triangleright Does not need a chart
	- \blacktriangleright Greedy
	- \blacktriangleright Linear time complexity
- \blacktriangleright Neural networks in parsing
	- \blacktriangleright Can reduce independence assumptions
	- \triangleright Often not grammar-based, but letting the neural networks score all possible phrases (e.g. span-based parsing)
	- \blacktriangleright Typically gives better results
- \blacktriangleright The first seminar will cover a transition-based neural model

Next

- Seminar 1 (see groups on web page)
- \blacktriangleright Supervision
- \blacktriangleright Project web page is now up!

Next

\blacktriangleright Wednesday

- Seminar 1 (see groups on web page)
- \blacktriangleright Supervision
- \blacktriangleright Project web page is now up!
- \blacktriangleright Now: supervision