
Graph-based dependency
grammar

Syntactic analysis (5LN455)

2023

Sara Stymne 
Department of Linguistics and Philology

Partially based on slides from Marco Kuhlmann

Overview

• Dependency grammar and projectivity

• Arc-factored dependency parsing

Collins’ algorithm

Eisner’s algorithm

• Evaluation of dependency parsers

• Transition-based dependency parsing

The arc-standard algorithm

• Advanced dependency parsing

Dependency grammar

Dependency trees

• In an arc h → d, the word h is called the head, and the
word d is called the dependent.

• The arcs form a rooted tree.

• Each arc has a label, l, and an arc can be described as (h, d, l)

booked a flightI from LA

subj

dobj

det pmod

Dependency grammar

ROOT

root

Projectivity

• An important characteristic of dependency trees
is projectivity

• A dependency tree is projective if:

• For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that

i →∗ k for every k such that min(i, j) < k <

max(i, j))

Projective and non-projective trees

2 JOAKIM NIVRE

Figure 2. Non-projective dependency tree for an English sentence.

In order to be a well-formed dependency tree, the directed graph must also satisfy the following
conditions:

(1) Root: The dummy root node 0 does not have any incoming arc (that is, there is no arc
of the form (i, l, 0)).

(2) Single-Head: Every node has at most one incoming arc (that is, the arc (i, l, j) rules
out all arcs of the form (k, l0, j) where k 6= i or l0 6= l).

(3) Connected: The graph is weakly connected (that is, in the corresponding undirected
graph there is a path between any two nodes i and j).

In addition, a dependency tree may or may not satisfy the following condition:

(4) Projective: For every arc in the tree, there is a directed path from the head of the
arc to all words occurring between the head and the dependent (that is, the arc (i, l, j)
implies that i !⇤

k for every k such that min(i, j) < k < max(i, j)).

Projectivity is a notion that has been widely discussed in the literature on dependency grammar
and dependency parsing. Broadly speaking, dependency-based grammar theories and annotation
schemes normally do not assume that all dependency trees are projective, because some linguistic
phenomena involving discontinuous structures can only be adequately represented using non-
projective trees. By contrast, many dependency-based syntactic parsers assume that dependency
trees are projective, because it makes the parsing problem considerably less complex. Figure 2
shows a non-projective dependency tree for an English sentence.

The parsing problem for a dependency parser is to find the optimal dependency tree y given
an input sentence x. Note that this amounts to assigning a syntactic head i and a label l to
every node j corresponding to a word xj in such a way that the resulting graph is a tree rooted
at the node 0. This makes the parsing problem more constrained than in the case of phrase
structure parsing, as the nodes are given by the input and only the arcs have to be inferred.
In graph-theoretic terms, this is equivalent to finding a spanning tree in the complete graph
Gx = (Vx, Vx ⇥ L ⇥ Vx) containing all possible arcs (i, l, j) (for nodes i, j and labels l), a fact
that is exploited in so-called graph-based models for dependency parsing.

Another di↵erence compared to phrase structure parsing is that there are no part-of-speech
tags in the syntactic representations (because there are no pre-terminal nodes, only terminal
nodes). However, most dependency parsers instead assume that part-of-speech tags are part of
the input, so that the input sentence x actually consists of tokens x1, . . . , xn annotated with their
parts of speech t1, . . . , tn (and possibly additional information such as lemmas and morphosyn-
tactic features). This information can therefore be exploited in the feature representations used
to select the optimal parse, which turns out to be of crucial importance.

DEPENDENCY PARSING

JOAKIM NIVRE

Contents

1. Dependency Trees 1
2. Arc-Factored Models 3
3. Online Learning 3
4. Eisner’s Algorithm 4
5. Spanning Tree Parsing 6
References 7

A dependency parser analyzes syntactic structure by identifying dependency relations between
words. In this lecture, I will introduce dependency-based syntactic representations (§1), arc-
factored models for dependency parsing (§2), and online learning algorithms for such models
(§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm
for projective dependency parsing (§4) and the Chu-Liu-Edmonds spanning tree algorithm for
non-projective dependency parsing (§5).

1. Dependency Trees

In a dependency tree, a sentence is analyzed by connecting words by binary asymmetrical relations
called dependencies, which are categorized according to the functional role of the dependent word.
Formally speaking, a dependency tree for a sentence x can be defined as a labeled directed graph
G = (Vx, A), where Vx = {0, . . . , n} is a set of nodes, one for each position of a word xi in the
sentence plus a node 0 corresponding to a dummy word root at the beginning of the sentence,
and where A ✓ (Vx ⇥L⇥Vx) is a set of labeled arcs of the form (i, l, j), where i and j are nodes
and l is a label taken from some inventory L. Figure 1 shows a typical dependency tree for an
English sentence with a dummy root node.

Date: 2013-03-01.

Figure 1. Dependency tree for an English sentence with dummy root node.

1

Projectivity and dependency parsing

• Many dependency parsing algorithms can only
handle projective trees

• Non-projective trees do occur in natural language

• How often depends on the language (and
treebank)

• In the course: in-depth discussion of projective
algorithms, some discussion of non-projective
algorithms

Main parsing strategies

• Graph-based dependency parsing:

• Scores the dependency graph (tree)

• Transition-based dependency parsing:

• Scores a sequence of transitions

• There are also grammar-based methods, which
we will not discuss (not commonly used)

Arc-factored dependency parsing

Arc-factored dependency parsing

Ambiguity

Just like phrase structure parsing,  
dependency parsing has to deal with ambiguity.

booked a flightI from LA

subj

dobj

det pmod

Ambiguity

Just like phrase structure parsing,  
dependency parsing has to deal with ambiguity.

booked a flightI from LA

subj

dobj

det

pmod

Disambiguation

• We need to disambiguate between  
alternative analyses.

• We develop mechanisms for scoring dependency
trees, and disambiguate by choosing  
a dependency tree with the highest score.

Scoring models and parsing algorithms

Distinguish two aspects:

• Scoring model:  
How do we want to score dependency trees?

• Parsing algorithm:  
How do we compute a highest-scoring
dependency tree under the given scoring model?

The arc-factored model

• Split the dependency tree t into parts p1, ..., pn,  
score each of the parts individually,  
and combine the score into a simple sum.

score(t) = score(p1) + … + score(pn)

• The simplest scoring model is  
the arc-factored model, where  
the scored parts are the arcs of the tree.

Examples of classic features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb  
and the dependent is a noun.’

• ‘The head is a verb  
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

• ‘The arc has length 2.’

Arc-factored dependency parsing

Training using structured prediction

• Take a sentence w and a gold-standard
dependency tree g for w.

• Compute the highest-scoring dependency tree
under the current weights; call it p.

• Increase the weights of all features  
that are in g but not in p.

• Decrease the weights of all features  
that are in p but not in g.

Arc-factored dependency parsing

Training using structured prediction

• Training involves repeatedly parsing (treebank)
sentences and refining the weights.

• Hence, training presupposes an efficient parsing
algorithm.

Arc-factored dependency parsing

Higher order models

• The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

• An nth-order model scores subgraphs consisting of (at
most) n arcs.

• Second-order: siblings, grand-parents

• Third-order: tri-siblings, grand-siblings

• Higher-order models capture more linguistic structure
and give higher parsing accuracy, but are less efficient

Arc-factored dependency parsing

Parsing algorithms

• Projective parsing

• Inspired by the CKY algorithm

• Collins’ algorithm

• Eisner’s algorithm

• Non-projective parsing:

• Minimum spanning tree (MST) algorithms

• e.g. Chu-Liu-Edmunds algorithm (CLE)

Arc-factored dependency parsing

Collins’ algorithm

Collins’ algorithm

• Collin’s algorithm is a simple algorithm  
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

• It can be understood as an extension  
of the CKY algorithm to dependency parsing.

• Like the CKY algorithm, it can be characterized
as a bottom-up algorithm  
based on dynamic programming.

Signatures, Collins’

[min, max, root]

root

min max

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA][1, 2, booked][0, 1, I] [2, 3, a]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 5, flight]

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

score(t) = score(t1) + score(t2) + score(l → r)

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

for each [min, max] with max - min > 1 do

 for each l from min to max - 2 do

 double best = score[min][max][l]

 for each r from l + 1 to max - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(l → r)

 if current > best then

 best = current

 score[min][max][l] = best

Collins’ algorithm

Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r → l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

r

max

t2

l

min mid

t1

Complexity analysis

• Space requirement:  
O(|w|3)

• Runtime requirement:  
O(|w|5)

Collins’ algorithm

Extension to the labeled case

• It is important to distinguish dependencies  
of different types between the same two words.

Example: subj, dobj

• For this reason, practical systems typically  
deal with labeled arcs.

• The question then arises how to extend  
Collins’ algorithm to the labeled case.

Collins’ algorithm

Smart approach

• Before parsing, compute a table that lists,  
for each head-dependent pair (h, d),  
the label that maximizes the score of arcs h → d.

• This is guaranteed to be the arcs that could
be used in a highest-scoring tree

• During parsing, simply look up the best label  
in the pre-computed table.

• This adds (not multiplies!) a factor of |L||w|2  
to the overall runtime of the algorithm.

Collins’ algorithm

Eisner’s algorithm

• With its runtime of O(|w|5), Collins’ algorithm  
may not be of much use in practice.

• With Eisner’s algorithm we will be able to solve
the same problem in O(|w|3).

• Intuition: collect left and right dependents
independently

Basic idea

In Collins’ algorithm, adding a left-to-right arc  
is done in one single step, specified by 5 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min max

Eisner’s algorithm

In Collins’ algorithm, adding a left-to-right arc  
is done in one single step, specified by 5 positions.

Basic idea

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min mid

r

max

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Eisner’s algorithm

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

ComparisonComparison

Eisner’s algorithmEisner’s algorithm

Dynamic programming tables

• Collins’:

• [min,max,head]

• Eisner’s

• [min,max,head-side,complete]

• head-side (binary): is head to the left or
right?

• complete (binary:) is the non-head side
still looking for dependents?

Eisner’s algorithm

Graphic representation

• [min,max,left,yes]

• [min,max,right,yes]

• [min,max,left,no]

• [min,max,right,no]

Eisner’s algorithm

Graphic representation

• [min,max,left,yes]

• [min,max,right,yes]

• [min,max,left,no]

• [min,max,right,no]

Eisner’s algorithm

Possible operations

Eisner’s algorithm

+ =

+ =

+ =

+ =

i k k j i j

i k k j i j

i k k+1 j i j

i k k+1 j i j

Pseudo code

for each i from 0 to n and all d,c do

C[i][i][d][c] = 0.0

for each m from 1 to n do

 for each i from 0 to n-m do

 j = i+m

 C[i][j][⟵][1] = maxi≤q<j(C[i][q][→][0] + C[q+1][j][⟵][0]+score(wj,wi)

C[i][j][→][1] = maxi≤q<j(C[i][q][→][0] + C[q+1][j][⟵][0]+score(wi,wj)

C[i][j][⟵][0] = maxi≤q<j(C[i][q][⟵][0] + C[q][j][⟵][1])

C[i][j][→][0] = maxi≤q<j(C[i][q][→][1] + C[q][j][→][0])

return [0][n][→][0]

Eisner’s algorithm

Summary

• Eisner’s algorithm is an improvement over
Collin’s algorithm that runs in time O(|w|3).

• The same scoring model can be used.

• The same technique for extending the parser to
labeled parsing can be used, adding O(|L||w|2) to
the run time.

• Eisner’s algorithm is the basis of current  
arc-factored dependency parsers.

Eisner’s algorithm

Minimum-spanning tree parsing

• Based on graph algorithms to find the minimum
spanning tree

• Often: Chu-Liu-Edmonds algorithm (CLU)

• Directly produces non-projective trees

• First suggested in the MSTparser

• One of the most popular algorithms today

Minimum-spanning tree parsing

• Intuition:

• Score all word pairs in both directions

• Create a fully connected graph with these scores

• Remove all edges going into ROOT

• For each node, greedily keep only the highest-scoring
incoming arc

• If this produces a tree: done!

• Otherwise: handle each cycle in the graph

Evaluation of dependency parsers

• labelled attachment score (LAS):  
percentage of correct arcs,  
relative to the gold standard

• labelled exact match (LEM):  
percentage of correct dependency trees,  
relative to the gold standard

• unlabelled attachment score/exact match (UAS/
UEM):  
the same, but ignoring arc labels

Accuracy vs precision/recall

• Attachment score is an accuracy score

• For phrase-structure parsing we reported
precision and recall

• Why is that not done for dependency parsing?

Coming up

• Monday, Feb 20: guest lecture, Paola Merlo, 2-K1023

• Wednesday, Feb 22, Lecture:

• Transition-based parsing (watch videos first)

• Sign up for a project and hand in a proposal in Studium
(DL: February 27)

• Literature seminar 2, March 2

• Do assignment 2, literature review (DL: March 6)

• Start looking at the dependency assignment (DL: March 13)

• Supervision: Feb 27 and March 8

