
Introduction

Syntactic parsing (5LN713)

2022-01-17

Sara Stymne
Department of Linguistics and Philology

Partly based on slides from Marco Kuhlmann

Teachers

• Sara Stymne

• Lectures

• Course coordinator and examiner

• Adam Moss

• Assignments, seminars, projects

Today

• Introduction to syntactic analysis

• Course information

• Exercises

What is syntax?

• Syntax addresses the question of how sentences
are constructed in particular languages.

• The English (and Swedish) word syntax comes
from the Ancient Greek word sýntaxis
‘arrangement’.

What is syntax not?

Syntax does not answer questions about …

… how speech is articulated and perceived
(phonetics, phonology)

… how words are formed
(morphology)

… how utterances are interpreted in context
(semantics, pragmatics)

What is syntax not?

Syntax does not answer questions about …

… how speech is articulated and perceived
(phonetics, phonology)

… how words are formed
(morphology)

… how utterances are interpreted in context
(semantics, pragmatics)

simplified

Why should you care about syntax?

• Syntax describes the distinction between
well-formed and ill-formed sentences.

• Syntactic structure can serve as the basis
for semantic interpretation and can be used for

• Machine translation

• Information extraction and retrieval

• Question answering

• ...

Why should you care about syntax?

• Syntactic structure can be useful for analysing
large text materials

• Research in digital humanities

• Economic analysis

Parsing

The automatic analysis of a sentence
with respect to its syntactic structure.

Theoretical frameworks

• Generative syntax
Noam Chomsky (1928–)

• Categorial syntax
Kazimierz Ajdukiewicz (1890–1963)

• Dependency syntax
Lucien Tesnière (1893–1954)

Theoretical frameworks

• Generative syntax
Noam Chomsky (1928–)

• Categorial syntax
Kazimierz Ajdukiewicz (1890–1963)

• Dependency syntax
Lucien Tesnière (1893–1954)

Theoretical frameworks

Chomsky Ajdukiewicz Tesnière

Phrase structure trees

leaves (bottom)

prefer

a

morning

flightNoun

Nom Noun

NomDet

NPVerb

I

Pro

VPNP

S root (top)

Dependency trees

Economic news had little effect on financial marketsROOT

PRED

ATT SBJ ATT

OBJ

ATT

PC

ATT

Phrase structure vs dependency trees

prefer

a

morning

flightNoun

Nom Noun

NomDet

NPVerb

I

Pro

VPNP

S

Economic news had little effect on financial marketsROOT

PRED

ATT SBJ ATT

OBJ

ATT

PC

ATT

Ambiguity

I booked a flight from LA.

• This sentence is ambiguous. In what way?

• What should happen if we parse the sentence?

Ambiguity

booked

a

flight

Nom PP

NomDet

NPVerb

I

Pro

VPNP

S

from LANoun

Ambiguity

booked

a

NomDet

NP PPVerb

I

Pro

VPNP

S

from LA

flight

Noun

Interesting questions

• Is there any parse tree at all?

• Recognition

• What is the best parse tree?

• Parsing

Parsing as search

• Parsing as search:
Search through all possible parse trees
for a given sentence.

• In order to search through all parse trees
we have to ‘build’ them.

Top–down and bottom–up

top–down

only build trees that are rooted at S

may produce trees that do not match the input

bottom–up

only build trees that match the input

may produce trees that are not rooted at S

Dynamic programming (DP)

• Divide and conquer:
In order to solve a problem, split it into subproblems,
solve each subproblem, and combine the solutions.

• Dynamic programming (DP) (bottom up):
Solve each subproblem only once and save the
solution in order to use it as a partial solution in a
larger subproblem.

• Memoisation (top down):
Solve only the necessary subproblems and store their
solutions for reuse in solving other subproblems.

Example: fibonacci numbers

Naive implementation

def fib(n):
 if n <= 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

Time complexity: O(2n)

Example: fibonacci numbers

Memoization (top down)

fibC = {0:0, 1:1}
def fibMem(n):
 if n <= 1:
 return n
 if not n in fibC:
 fibC[n] = fibC(n-1) + fibC(n-2)
 return fibC[n]

Time complexity: O(n)

Example: fibonacci numbers

Dynamic programming (bottom up)

def fib_dp(n):
 fibV = [0,1]
 for i in range(2, n+1):

 fibV.append(fib[i-1] + fibV[i-2])
 return fibV[n]

Time complexity: O(n)

How many trees are there?

0

375

750

1125

1500

1 2 3 4 5 6 7 8

linear cubic exponential

Complexity

• Using DP we can (sometimes) search through all
parsetrees in polynomial time.

• That is much better than to spend
exponential time!

• But it may still be too expensive!
In these cases one can use an approximative
method such as greedy search or beam search.

• Often possible in linear time

Course information

Intended learning outcomes 5LN713

At the end of the course, you should be able to

• explain the standard models and algorithms used
in phrase structure and dependency parsing;

• implement and evaluate some of these techniques;

• critically evaluate scientific publications in the field
of syntactic parsing,

• design, evaluate, or theoretically analyse the
syntactic component of an NLP system

Examination 5LN713

• Examination is continuous and distributed over
three graded assignments, two literature
seminars, and a graded project

• Two assignments are programming tasks where
you implement (parts of) parsers.

• Literature review assignment

• Two literature seminars

Practical assignments

• Assignment 1: PCFG

• Implement conversion of treebank to CNF

• Implement CKY algorithm

• Assignment 3: Dependency parsing

• Implement an oracle for transition-based
dependency parsing

Literature review

• Pick two research articles about parsing

• Can be from journals, conferences or
workshops

• The main topic of the articles should be
parsing, and they should be concerned with
algorithms (i.e. not focusing on applying parsing
to other tasks, evaluation, et.c.)

• Write a 2-page report: summarize, analyse and
critically discuss

Literature seminars

• Read one given article for each seminar

• Prepare according to the instructions on the homepage

• Everyone is expected to be able to discuss the article and
the questions about it

• It should be clear that you have read and analysed the
article, but it is perfectly fine if you have misunderstood
some parts

• The seminars are obligatory

• If you miss a seminar or are unprepared, you will have
to hand in a written report.

Project

• Can be done individually or in pairs:

• To be self-organized by you!

• Suggestions for topics/themes will be on web
page

• Project activities:

• Proposal: February 25

• Report: March 25

• Oral discussion (only for pairs): March 23

Learning outcomes and examination

• explain the standard models and algorithms used
in phrase structure and dependency parsing; all
assignments and seminars

• implement and evaluate some of these techniques;
assignments 1, 3

• critically evaluate scientific publications in the field
of syntactic parsing, assignment 2, seminars

• design, evaluate, or theoretically analyse the
syntactic component of an NLP system project

Grading 5LN713

• The assignments and project are graded with G and VG

• G on the seminars if present, prepared and active. The
seminars are obligatory, and not graded!

• To achieve G on the course:

• G on all assignments, seminars and project

• To achieve VG on the course:

• VG on the three assignments or

• VG on project and at least one assignment

Teachers

• Sara Stymne

• Examiner, course coordinator, lectures,

• Adam Moss

• Assignments, seminars, project supervision

Teaching

• Lectures

• Mainly:

• Distributed as recordings

• Followed by summary+exercise on Campus (+Zoom)

• In a few cases live

• 2 seminars

• Tentatively on Campus

• Assignment supervision on Campus 4 times, plus on
request

Lectures

• Lectures and course books cover basic
parsing algorithms in detail

• They touch on more advanced material, but
you will need to read up on that
independently

Lecture organization

• Watch recorded lectures (slides+voice) on your
own

• Read relevant course literature

• Work on given small exercise on your own

• This is followed by a summary session

• Repetition of the most important concepts

• Discussion of exercise + questions from
recordings

• Questions by students

Course information

• Web page:

• Course information

• Assignments and other instructions

• Annotated schedule

• Studium:

• Zoom links

• Recorded lectures and lecture materials

• Hand in assignments

• Discussion forum

Course workload 5LN713

• 7.5 hp means about 200 hours work:
• ~ 40 h lectures (including preparation)

• 2 h seminars

• 158 h work on your own

• ~ 80 h assignment work (including reading)

• ~ 10 h seminar preparation

• ~ 68 h project work

Deadlines

Assignment Deadline Backup

1: PCFG Feb 11 April 1

2: Lit review March 4 April 1

3: Dependency March 11 April 1

Project proposal Feb 25 March 4

Project report March 25 April 22

Seminar Date
1 February 9
2 March 2

Reading: course books

• Daniel Jurafsky and James H. Martin.
Speech and Language Processing. 3rd edition.
2019. Available online as pdf.
Chapters 12-14.

• Sandra Kübler, Ryan McDonald,
and Joakim Nivre. Dependency Parsing.
Morgan and Claypool, 2009.
Chapter 1-4, 6.

Reading: articles (tentatively)

• Seminar 1

• Chris Dyer, Adhiguna Kuncoro, Miguel
Ballesteros, Noah A. Smith. Recurrent Neural
Network Grammars. NAACL 2016.

• Seminar 2

• Eliyahu Kiperwasser and Yoav Goldberg. Simple
and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations.
TACL. Volume 4, 2016

https://www.aclweb.org/anthology/people/c/chris-dyer/
https://www.aclweb.org/anthology/people/c/chris-dyer/
https://www.aclweb.org/anthology/people/a/adhiguna-kuncoro/
https://www.aclweb.org/anthology/people/a/adhiguna-kuncoro/
https://www.aclweb.org/anthology/people/m/miguel-ballesteros/
https://www.aclweb.org/anthology/people/m/miguel-ballesteros/
https://www.aclweb.org/anthology/people/m/miguel-ballesteros/
https://www.aclweb.org/anthology/people/m/miguel-ballesteros/
https://www.aclweb.org/anthology/people/n/noah-a-smith/
https://www.aclweb.org/anthology/people/n/noah-a-smith/
https://www.aclweb.org/anthology/N16-1024.pdf
https://www.aclweb.org/anthology/N16-1024.pdf
https://www.aclweb.org/anthology/N16-1024.pdf
https://www.aclweb.org/anthology/N16-1024.pdf
https://www.aclweb.org/anthology/people/e/eliyahu-kiperwasser/
https://www.aclweb.org/anthology/people/e/eliyahu-kiperwasser/
https://www.aclweb.org/anthology/people/y/yoav-goldberg/
https://www.aclweb.org/anthology/people/y/yoav-goldberg/
https://www.aclweb.org/anthology/Q16-1023.pdf
https://www.aclweb.org/anthology/Q16-1023.pdf
https://www.aclweb.org/anthology/Q16-1023.pdf
https://www.aclweb.org/anthology/Q16-1023.pdf
https://www.aclweb.org/anthology/Q16-1023.pdf
https://www.aclweb.org/anthology/Q16-1023.pdf
https://www.aclweb.org/anthology/volumes/Q16-1/
https://www.aclweb.org/anthology/volumes/Q16-1/

Evaluation from previous years

• 2020: Overall score: 3.5/5 (3.7/5 in 2019)

• Strengths:

• Communication of intended learning outcomes (4.8/5)

• Teachers' efforts (4.8/5)

• Programming assignments were useful (but hard)

• Freedom to choose project

• Interesting and suitably challenging assignment

• Good to combine implementation of basic algorithms with discussion of
more advanced topics

• Weaknesses:

• Assignment 1 a bit difficult and too big

• Slightly modified, more scheduled supervision

• A discussion forum would be useful

• We have set one up in Studium

Recorded lectures

• Will be available in Studium (with automatic
subtitles)

• Until you get access to Studium, you can find the first
block of recorded lectures (without subititles) here:

• https://www.youtube.com/playlist?
list=PLH4LBlvRWr95-h6-g8R4P3hUF1wZK3sdh

• From 2020, so a few comments may not be relevant
(e.g. referring to the advanced programming course
as finished)

https://www.youtube.com/playlist?list=PLH4LBlvRWr95-h6-g8R4P3hUF1wZK3sdh
https://www.youtube.com/playlist?list=PLH4LBlvRWr95-h6-g8R4P3hUF1wZK3sdh
https://www.youtube.com/playlist?list=PLH4LBlvRWr95-h6-g8R4P3hUF1wZK3sdh
https://www.youtube.com/playlist?list=PLH4LBlvRWr95-h6-g8R4P3hUF1wZK3sdh

Work until Monday lecture

• Read J&M 12.1-12.7 (introduction)

• Read J&M 13.1-13.3; 14.1-14.2 (CKY)

• Watch recorded lectures about CKY

• Read description of assignment 1: CKY

• Work on exercises (in Studium)

• Repetition (if needed): basic syntax,
programming

Exercise

• Try to come up with parse trees for all
possible interpretations of the below example
sentence:

• Phrase-structure trees

• Dependency trees

• ”Time flies like an arrow”

