
CKY discussion session

Syntactic parsing

2020

Sara Stymne
Department of Linguistics and Philology
Mostly based on slides from Marco Kuhlmann

New teacher team

• Adam will no longer teach on the course

• Sara:

• Examiner and course coordinator

• Lectures and seminars

• Some project supervision and assignment 2

• Paloma

• Assignments 1 and 3, including grading

• Some project supervision

Seminar 1

• Chris Dyer, Adhiguna Kuncoro, Miguel
Ballesteros, Noah A. Smith. Recurrent Neural
Network Grammars. NAACL 2016.

• You can treat the neural network part mainly as
a black box

• Discussion points on web page later this week

• Seminar 1 will be only on Zoom

https://www.aclweb.org/anthology/N16-1024/
https://www.aclweb.org/anthology/N16-1024/
https://www.aclweb.org/anthology/N16-1024/
https://www.aclweb.org/anthology/N16-1024/

CNF conversion

Restrictions

• The original CKY algorithm can only handle rules that
are at most binary:
C → wi , C → C1 C2 .

• It can easily be extended to also handle unit productions:
C → wi , C → C1 , C → C1 C2 .

• This restriction is not a problem theoretically,
but requires preprocessing (binarization) and
postprocessing (debinarization).

• A parsing algorithm that does away with this restriction
is Earley’s algorithm (Lecture 5 and J&M 13.4.2).

Treebank CNF conversion (1)

Probably easiest to solve by a recursive function XXX represent
either a list or string

A tree is represented as a list of subtrees, e.g.
[S [NP [PRON they]] [VP [V like] [NP [N snow]]]]

List contains two strings
e.g.: ["IN", "as"]
 return list

List contains two items, string and list
e.g. : ["NP" ["PRP", XXX]]
 Contract the two grammar symbols, and remove one list
 Apply cnf-method to the resulting tree
 return cnf(["NP+PRP", XXX])
List contains three symbols, string, list, list
e.g. ["NP", ["DT", XXX], ["NNS", XXX]]
 Keep as it is, and apply cnf-method to the two lists
 return [”NP”, cnf(["DT", XXX]), cnf(["NNS", XXX])]

Treebank CNF conversion (2)

List contains more than three symbols, string, list,
list, list, ...
e.g. ["S", ["NP", XXX], ["VP", XXX], [".", XXX]]
 Keep first two items, create an extra list with
 new label to which you give a "new" label.
 Apply cnf to the resulting tree
 return cnf(["S", ["NP", XXX],
 ["new-name", ["VP", XXX], [".", XXX]]])

 # think about the naming and markovization!

List contains something else:
 Something has gone wrong!

CNF Conversion task

• Note a small change in the assignment from
previous years:

• Instead of changing the list ”in-place”, you are
now required to return the new list.

• We believe this will be a simplification, since
many students previously struggled with the in-
place conversion

• Please disregard any mention of in-place
conversion that might still be in the recordings

The CKY algorithm

Overview of the CKY algorithm

• The CKY algorithm is an efficient bottom-up
parsing algorithm for context-free grammars.

• It was discovered at least three (!) times
and named after Cocke, Kasami, and Younger.

• It is one of the most important and most used
parsing algorithms.

Recognizing small trees

Recognition

C

wi

Recognizing small trees

Recognition

C

covers all words
between i – 1 and i

Recognizing big trees

Recognition

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

Recognizing big trees

C → C1 C2

Recognition

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

Recognizing big trees

Recognition

C

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

Recognizing big trees

Recognition

C

covers all words
between min and max

Questions, CKY recognition

• How do we know that we have recognized
that the input sequence is grammatical?

• How do we need to extend this reasoning
in the presence of unary rules: C → C1 ?

Recognition

Questions

• What is the signature of a parse tree
for the complete sentence?

• How many different signatures are there?

• Can you relate the runtime of the parsing
algorithm to the number of signatures?

Recognition

Questions

• What is the signature of a parse tree
for the complete sentence?

• [0, n, S]

• How many different signatures are there?

• n^2 * G

• Can you relate the runtime of the parsing
algorithm to the number of signatures?

• n^3 * G

Recognition

Implementation
CKY recognizer

Preterminal rules

for each wi from left to right

 for each preterminal rule C -> wi

 chart[i - 1][i][C] = true

Implementation

Binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 for each binary rule C -> C1 C2

 for each mid from min + 1 to max - 1

 if chart[min][mid][C1] and chart[mid][max][C2] then

 chart[min][max][C] = true

Implementation

Questions, CKY recognizer

• In what way is this algorithm bottom–up?

• Why is that property of the algorithm important?

• How do we need to extend the code if we wish
to handle unary rules C → C1 ?

• Why would we want to do that?

Implementation

Unary rules

for each max from 1 to n

 for each min from max - 1 down to 0

 // First, try all binary rules as before.

 ...

 // Then, try all unary rules.

 for each syntactic category C

 for each unary rule C -> C1

 if chart[min][max][C1] then

 chart[min][max][C] = true

new bounds!

Question, unary rules

This is not quite right.
Why, and how could we fix the problem?

Implementation

CKY parser

Idea

• For trees built using preterminal rules:
Find a most probable rule. (apply all rules!)

• For trees built using binary rules:
Find a binary rule r and a split point mid such that
p(r) × p(t1) × p(t2) is maximal, where
t1 is a most probable left subtree and
t2 is a most probable right subtree.

Probabilistic parsing

Preterminal rules

for each wi from left to right

 for each preterminal rule C -> wi

 chart[i - 1][i][C] = p(C -> wi)

Probabilistic parsing

Binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 double best = undefined

 for each binary rule C -> C1 C2

 for each mid from min + 1 to max - 1

 double t1 = chart[min][mid][C1]

 double t2 = chart[mid][max][C2]

 double candidate = t1 * t2 * p(C -> C1 C2)

 if candidate > best then

 best = candidate

 chart[min][max][C] = best

Probabilistic parsing

Question

How should we treat unary rules?

Probabilistic parsing

Backpointers

• When we find a new best parse tree,
we want to remember how we built it.

• For each element t = chart[min][max][C],
we also store backpointers to those elements
from which t was built.

• Besides the ordinary chart of floats, we also have
a backpointer chart

Probabilistic parsing

Preterminal rules

for each wi from left to right

 for each preterminal rule C -> wi

 chart[i - 1][i][C] = p(C -> wi)

 backpointerChart[i-1][i][C] = (C, wi, i, i-1)

Probabilistic parsing

Backpointers

double best = undefined

Backpointer backpointer = undefined

...

if candidate > best then

 best = candidate

 // We found a better tree; update the backpointer!

 backpointer = (C, C1, C2, min, mid, max)

...

chart[min][max][C] = best

backpointerChart[min][max][C] = backpointer

Probabilistic parsing

Backtrace

Convenient to use recursion to retrieve the tree!

assume backppointers are tuples:

Preterminal: (C, w, min, max)

Binary: (C, C1, C2, min, mid, max)

backtrace(bp, bpChart):

 if length(bp) == 4: #preterminal rule

return tree for C, w

 else if length(bp) == 6 #binary rule

return tree for C, backtrace(left subtree), backtrace(right
subtree)

Implementation

Implementation ideas, Python

defaultdict is a suitable datastructure for charts!

Index the defaultdicts with a tuple (min, max, cat)

 pi = defaultdict(float)

 bp = defaultdict(tuple)

Recognize all parse trees built with with preterminal rules.

Recognize all parse trees built with binary rules.

”S” is not always the top category, the below is a simplification

return backtrace(bp[0, n, "S"], bp);

Implementation

Assignment 1: CKY parsing

• Tips:

• During development: use print statements to make
sure your code does what you think it should

• Use a small test set, and possibly a small grammar
during development. The parser is slow

• Start on the assignment now! Do not leave it until
the last week!

• First scheduled lab session on Wednesday

• You can also contact Paloma for help!

Probabilistic parsing

Coming up

• Wednesday:

• First lab session for CKY assignment

• Next theme

• Treebanks and Earley’s algorithm

• Recorded lectures and exercises will be available
in Studium

• Lecture next Monday

• Seminar 1: Wednesday February 9

• Details plus groups on web page later this week

Probabilistic parsing

