

Language Technology: Research and Development

R&D Projects – From Proposal to Implementation

Sara Stymne

Uppsala University
Department of Linguistics and Philology
sara.stymne@lingfil.uu.se

Based on slides by Joakim Nivre

R&D Projects

Research and development is often organized into projects

- Time-limited
- One-time effort
- ► Specific goals
- Separate budget
- Separate organization

Projects vary in scope and size

- ► Term paper (1 person, 240 hours)
- ► EU FP project (15–20 sites, 6–10 MEUR)

Life Cycle of a (Funded) Project

Pre-grant activities:

- Explore research opportunities
- Write and submit research proposal
- ► Sign research contract

Post-grant activities:

- Start up: mobilize project resources
- Manage research activities
- Close down: report project outcome

Research Funding in Sweden – Government

Direct grants to universities (16 BSEK)

► Basic funding for research and graduate education

Research councils and agencies (9.5 BSEK)

- Swedish Research Council (VR)
- ► Environment, Agricultural Sciences and Spatial Planning (Formas)
- Health, Working Life and Welfare (FORTE)
- ► Innovation Systems (VINNOVA)

Research Funding in Sweden – Other

Public research foundations (2.5 BSEK)

- Bank of Sweden Tercentenary Foundation (RJ)
- Swedish Foundation for Strategic Research (SSF)
- Knowledge Foundation (KK)

Other Swedish non-profit research foundations (3.5 BSEK)

- Knut and Alice Wallenberg Foundation
- ► Swedish Cancer Society

Industrial and business research (100 BSEK, 1 BSEK to universities)

Research Funding in the European Union

Horizon Europe (2021–2027) (95.5 BEUR)

- 1. Excellent science (25 BEUR)
 - ► European Research Council (16 BEUR)
 - ► Marie Curie (6.6 BEUR)
 - Research Infrastructures (2.4 BEUR)
- 2. Global challenges and industrial competitiveness (53.5 BEUR)
 - ► Health, food, culture, digital, climate, civil security, ...
 - Joint research centre
- 3. Innovative Europe (13.6 BEUR)
 - European innovation council and ecosystems, European institute of innovation and technology
- 4. Widening and Euratom (3.4 BEUR)

Planning a Project

Research question

▶ What are you going to find out?

Previous work

▶ What do we know already?

Approach

▶ How are you going to find out?

Time plan

▶ When are you going to do what?

Research Questions

A research question is a clear, focused, relevant, and interesting question around which we center our research.

- Clear: Stated concisely using precise terminology
- Focused: Not too broad (nor too limited)
- Relevant: Has a bearing on the research topic
- ▶ Interesting: Provides substantial new information if answered

Above all, questions should be researchable.

Research Questions - Good or Bad?

- 1. Does global warming affect parsing accuracy?
- 2. Do multiword expressions affect parsing accuracy?
- 3. How do multiword expressions affect parsing accuracy?
- 4. How do light verbs affect parsing accuracy?
- 5. Are light verbs harder to parse than other verbs?
- 6. What can we do to improve parsing accuracy for light verbs?
- 7. Can valency info improve parsing accuracy for light verbs?
- 8. What is the F_1 of the Berkeley parser on light verbs in PTB?
- 9. How do you install the Berkeley parser on your laptop?

Previous Work

- ► Why?
 - Scientific research should result in new knowledge
 - ► We make progress by building on previous results

"If I have seen further it is by standing on the shoulders of giants." (Newton)

- ► How?
 - ► Find literature using a focused search (internet, library)
 - ► Manage the literature in a database (references, annotations)
 - Use the literature in your own work (context, motivation)
- ► Tips and tricks:
 - ▶ Start with handbook or survey articles if available
 - Use the snowball method (references of references)
 - ► Use citation statistics (with caution)

Useful Resources and Tools

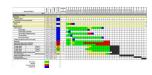
- ► The ACL Anthology (https://aclanthology.info)
 - ▶ Repository of (currently) over 46,000 scientific papers
 - Searchable using general or specialized search engines
 - ► Full text articles (PDF) and bibliographic references (BibTeX)
- University library (http://ub.uu.se)
 - ► Databases (Web of Science, ScienceDirect, Google Scholar)
 - ▶ Journals and books (printed and electronic)
- Reference management software
 - ▶ BibTeX (used with LaTeX) de facto standard in LT research
 - ► EndNote (widely used with MS Word) basic version free

Approach

- ► Theory:
 - ► Theoretical framework (concepts, definitions)
 - ▶ Refinement of research questions
- Method:
 - ▶ How can we answer the research question?
 - ▶ What theoretical results do we need (and how to prove them)?
 - ▶ What empirical data do we need (and how to get them)?
 - ▶ How do we analyze the results?
- ► Approach has to fit research questions

Approach – An Example

- ► Research question:
 - ▶ Are light verbs harder to parse than other verbs?
- ► Theory:
 - Parsing framework
 - ► Definitions (light verbs, other verbs)
- ► Method:
 - ▶ Data selection (sampling, annotation)
 - Evaluation metrics for verb-specific accuracy
 - Experimental setup (systems, data splits, tuning)
 - ► Hypothesis testing (statistical tests)
 - Error analysis (quantitative, qualitative)



Designing Experiments

- Identify variables:
 - Independent variable manipulated by researcher
 - Dependent variable measured by researcher
 - Control variable kept constant by researcher
- Select data:
 - Avoid bias in data selection
 - Distinguish training, development and test data
- Design measurements and analysis:
 - Use appropriate metrics
 - Use a reasonable baseline
 - ► Repeat measurements if needed
 - Use appropriate statistical tests
 - ► Check for alternative explanations

Time Plan

- Devise a project plan:
 - 1. Identify tasks and subtasks
 - 2. Identify dependencies between tasks
 - 3. Order tasks and make time estimates
 - 4. Set up milestones and contingency plans
- Words of wisdom:
 - 1. Keep it simple!
 - 2. Keep deadlines deadly!
 - 3. Multiply all time estimates by three!

Writing a Project Proposal

- Scientific part:
 - 1. Introduction (research questions, motivation)
 - 2. Background (previous work, current issues)
 - 3. Project description (theory, method, time plan)
 - 4. Expected results (significance)
- Administrative part:
 - 1. Organization and management
 - 2. Deliverables and milestones
 - 3. Budget
 - 4. Participants' qualifications (CV, publications)

VR Guidelines (Research Plan)

- Purpose and aims
 - Present the overall purpose and specific aims of the project.
- Survey of the field
 - Summarize previous research with key references.
- Project description
 - Give a summary of the project describing its theory, methods, time plan, and implementation.
- Significance and scientific novelty
 - Describe short-term and long-term significance of the project.
- Preliminary and previous results
 - Describe pilot studies that support the feasibility of the project.

VR Guidelines (Research Plan)

- Purpose and aims
 - Present the overall purpose and specific aims of the project.
- Survey of the field
 - Summarize previous research with key references.
- Project description
 - Give a summary of the project describing its theory, methods, time plan, and implementation.
- ► Significance and scientific novelty
 - Describe short-term and long-term significance of the project.
- ► Preliminary and previous results
 - ▶ Describe pilot studies that support the feasibility of the project.

Hints for Writing a Project Proposal

► Content:

- ▶ State research questions clearly and concisely from the start
- Use background to motivate research questions
- Be as specific as possible about theory and method
- Avoid unnecessary details convey the big picture
- Make sure to follow the guidelines closely

Form:

- Use exact terminology (but avoid obscure technical jargon)
- ▶ Use correct grammar and spelling (but keep it simple)
- ▶ Use concrete examples to exemplify abstract concepts
- Use graphical illustrations when appropriate
- ▶ Respect page limits with reasonable margins and font sizes

Popular Scientific Writing

- Write so that the general public can understand (target your grandma!)
- Assume no knowledge of NLP
- Avoid terms, or explain them if they are needed
- Use simple language
- Focus on the most important points
- Avoid technical details (if possible)
- Try to make it interesting
- Explain why the new knowledge is valuable

Implementing the Project

- Start up: mobilize project resources
 - ▶ Hire researchers and other personnel
 - ► Acquire equipment, software, data, literature
- Manage research activities
 - Implement project plan
 - Revise plans if necessary
- Close down: report project outcome
 - Dissemination of results (publications)
 - Report to funding agency

Your Project Proposals

- Maximum 3 pages excluding references (and not much shorter)
- Structure (following the VR Guidlines):
 - ► Purpose and aims (max 0.5 page)
 - ► Survey of the field (max 1 page)
 - Project description (min 1.5 page)
 - Theories and methods
 - ► Time plan and implementation
 - References
- Use the LaTeX template available!

Your Projects

- Time to start thinking seriously about a project
 - Proposals due October 8
 - Main proposal: 3 pages plus references (pdf)
 - ► Popular science abstract: 2000 characters (txt)
 - Presentations October 13 (8 minutes with slides)
 - Email your slides as pdf-files to your group leader the day before the seminar!
- Contact your group leaders if you need advice

Computational Resources

- ► You can use the Snowy cluster at UPPMAX if you need extra computational resources
 - Course project:
 - ▶ UPPMAX 2021/2-13
 - Gives you extra storage
 Create a personal folder under: /proj/uppmax2021-2-13
 - ► General CL project:
 - ► UPPMAX 2020/2-2
 - Gives you priority in the queue
- Create an account at supr.snic.se and apply for the projects
- ▶ Read up on using UPPMAX and the Slurm queueing system!

Coming up

- Next week
 - ► Final literature seminar
 - ► In case you missed a seminar you should have gotten instructions for how to compensate
 - ► Alumni lecture
- Project proposal