Cross-lingual NLP

Sara Stymne

Uppsala University
Department of Linguistics and Philology

September 1, 2020

What is a cross-lingual model

- Used to describe systems that involve more than one language
- Not one clear definition

Typical NLP scenario

- You want to solve problem X for language Y
- You collect annotated data
- You apply some ML algorithm

Typical NLP scenario

- You want to solve problem X for language Y
- You collect annotated data
- You apply some ML algorithm
- But:
 - There might not be any annotated data for X and Y
 - There might not even be much data at all for Y
 - There might be no pre-processing tools for Y

Typical NLP scenario

- You want to solve problem X for language Y
- You collect annotated data
- You apply some ML algorithm
- But:
 - There might not be any annotated data for X and Y
 - There might not even be much data at all for Y
 - There might be no pre-processing tools for Y
 - You do not feel up to creating all these resources

Use other languages!

- Luckily, languages are related, and can have a lot in common!
- Maybe there is a language similar to Y which has data and resources
- Cross-lingual NLP: Use data/resources for one (or more) languages, to solve a problem for another language!

Use other languages!

- Luckily, languages are related, and can have a lot in common!
- Maybe there is a language similar to Y which has data and resources
- Cross-lingual NLP: Use data/resources for one (or more) languages, to solve a problem for another language!
- Often used for low-resource languages
- But can also improve systems for medium/high resource languages

Terminology suggestion for parsing

From Miryam de Lhoneux

Focus for our group

- Polyglot:
 - Models that include several languages with equal status
- Cross-lingual:
 - Models that use one or more source languages and apply to a target language
 - No or little (annotated) data from the target language

Not in focus

- Polymonolingual systems
 - Systems where one architecture is used for many languages, but where an individual model is trained for each language
- Machine translation
 - Except when machine translation systems are trained in a cross-lingual/polyglot manner

Applications

- Multilingual systems can be trained for all type of applications
 - Tagging
 - Parsing
 - Machine translation
 - Lemmatization
 - Language modelling
 - Semantic role labelling
 -

Resources used for cross-lingual systems

- Parallel corpora
- Bilingual lexicons/Tag dictionaries
- Typology, databases like WALS
- Language relatedness
- Target data (possibly tiny, noisy and/or incomplete)
- Cross-lingual word embeddings

Cross-lingual methods

- Annotation projection
- Translation of data
- Delexicalized transfer
- Parameter transfer
- Training guidance/soft constraints
- Joint learning
-

Neural cross-lingual systems

- Neural models typically work well for cross-lingual models
- Cross-lingual systems can be viewed as multi-task systems
- Possible to share all or parts of an architecture
- Allows language representations as part of models
- Cross-lingual word embeddings an important resource

Example: cross-lingual dependency parsing

- Work from our parsing group at UU (de Lhoneux, Nivre, Smith, Stymne)
- Neural dependency parser
- Add a treebank embedding to the representation of words
- The rest of the architecture is shared for all languages
- Train cross-lingual models for groups of mainly related languages

Example: cross-lingual dependency parsing

- Work from our parsing group at UU (de Lhoneux, Nivre, Smith, Stymne)
- Neural dependency parser
- Add a treebank embedding to the representation of words
- The rest of the architecture is shared for all languages
- Train cross-lingual models for groups of mainly related languages
- This method also works monolingually when a language has many (diverse) treebanks

 $X_{ ext{the}}$ $X_{ ext{brown}}$ $X_{ ext{fox}}$ $X_{ ext{jumped}}$ $X_{ ext{root}}$

Word representations

Word representations + treebank embeddings

Cross-lingual parsing: results

- Results at CoNLL 2018 shared task
- Comparison with a monolingual model
- Metric: LAS

Language(s)	Monolingual	X-ling	Diff
Kazakh	23.9	32.0	+8.1
Swedish	83.3	84.3	+1.0
German	75.2	75.5	+0.3
Low-resource	17.7	25.3	+7.6
All	70.7	72.3	+1.6

Project suggestions

- All projects should involve more than one language
- You can focus on essentially any application

Project suggestions

- All projects should involve more than one language
- You can focus on essentially any application
- Some possibilities (CLP = cross-lingual/polyglot)
 - Come up with a new CLP method or an extension of an exisiting CLP method for a specific task
 - Extend CLP work to a new application/language
 - Perform an in-depth evaluation study of some CLP method
 - Compare different CLP methods or resources
 - Explore which languages to choose and/or how to mix languages for a/several target language(s)
 - Address issues with inconsistent tag sets/annotations across languages
 -

Papers

- Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, and Sara Stymne. (2018) 82 Treebanks, 34 Models: Universal Dependency Parsing with Multi-Treebank Model. CoNLL.
- Jörg Tiedemann. (2015) Cross-Lingual Dependency Parsing with Universal Dependencies and Predicted PoS Labels. DepLing.
- David Yarowsky, Grace Ngai, and Richard Wicentowski. (2001) Inducing multilingual text analysis tools via robust projection across aligned corpora. HLT.
- Mikel Artetxe, Sebastian Ruder, Dani Yogatama, Gorka Labaka, and Eneko Agirre. (2020) A Call for More Rigor in Unsupervised Cross-lingual Learning.
- Mikel Artetxe and Holger Schwenk. (2020) Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond.
- Goran Glavaš, Robert Litschko, Sebastian Ruder, and Ivan Vulić. (2019) How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions ACL
- Barbara Plank and Željko Agić. (2018) Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tagging. EMNLP
- Yu-Hsiang Lin et al. (2019) Choosing Transfer Languages for Cross-Lingual Learning. ACL.
- Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. (2016) Transfer Learning for Low-Resource Neural Machine Translation. EMNLP.

Questions?