

Language Technology: Research and Development

Language Technology Research and Development

Sara Stymne

Uppsala University Department of Linguistics and Philology sara.stymne@lingfil.uu.se

Language Technology: Research and Development

The Name of the Game

Computational Linguistics (CL)

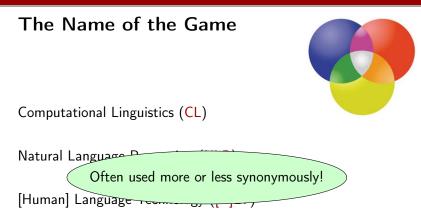
Natural Language Processing (NLP)

[Human] Language Technology ([H]LT)

[Natural] Language Engineering ([N]LE)

The Name of the Game

Computational Linguistics (CL)


 Study of natural language from a computational perspective Natural Language Processing (NLP)

 Study of computational models for processing natural language [Human] Language Technology ([H]LT)

 Development and evaluation of applications based on CL/NLP [Natural] Language Engineering ([N]LE)

Same as [H]LT but obsolete?

[Natural] Language Engineering ([N]LE)

An Interdisciplinary Field

Linguistics

Theory, language description, data analysis (annotation)
 Computer science

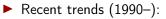
 Theory, data models, algorithms, software technology Mathematics

Theory, abstract models, analytic and numerical methods
 Statistics

► Theory, statistical learning and inference, data analysis

Linguistics

F. de Saussure L. Bloomfield (1857–1913) (1887–1949)


N. Chomsky (1928–)

Structuralist linguistics (1915–1960)

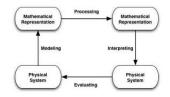
- Language as a network of relations (phonology, morphology)
- Inductive discovery procedures
- Generative grammar (1960–)
 - Language as a generative system (syntax)
 - Deductive formal systems (formal language theory)
 - NLP systems based on linguistic theories

Linguistics

- Language processing (psycholinguistics, neurolinguistics)
- Strong empiricist movement (corpus linguistics)
- NLP systems based on linguistically annotated data
- Theoretical and computational linguistics have diverged Interaction between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous? (Workshop at EACL 2009)

Computer Science

Alan Turing (1912–1954)


Herbert Simon and John Newell (1916–2001) (1927–1992)

Theoretical computer science

- Turing machines and computability (Church-Turing thesis)
- Algorithm and complexity theory (cf. formal language theory)
- Artificial Intelligence
 - Early work on symbolic logic-based systems (GOFAI)
 - Trend towards machine learning and sub-symbolic systems
 - Parallel development in natural language processing

Mathematics

- Mathematical model
 - Description of real-world system using mathematical concepts
 - Formed by abstraction over real-world system
 - Provide computable solutions to problems
 - Solutions interpreted and evaluated in the real world

Mathematical modeling fundamental to (many) science(s)

Mathematics

Real-world language technology problem:

- ► Syntactic parsing: sentence ⇒ syntactic structure
- No precise definition of relation from inputs to outputs
- At best annotated data samples (treebanks)
- Mathematical model:
 - Probabilistic context-free grammar G

$$T^* = \underset{T: yield(S)=T}{\operatorname{argmax}} P_G(T)$$

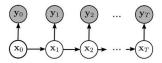
- T* can be computed exactly in the model
- T^* may or may not give a solution to the real problem

How do we determine whether a model is good or bad?

Statistics

Probability theory

Mathematical theory of uncertainty


Descriptive statistics

Methods for summarizing information in large data sets
 Statistical inference

Methods for generalizing from samples to populations

Statistics

- Probability theory
 - Framework for mathematical modeling
 - Standard models: HMM, PCFG, Naive Bayes
- Descriptive statistics
 - Summary statistics in exploratory empirical studies
 - Evaluation metrics in experiments (accuracy, precision, recall)
- Statistical inference
 - Estimation of model parameters (machine learning)
 - Hypothesis testing about systems (evaluation)

Language Technology R&D

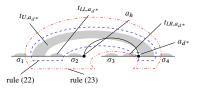
Sections in Transactions of the ACL (TACL):

- Theoretical research
- Empirical research
- Applications and tools
- Resources and evaluation

Language Technology R&D

Sections in Transactions of the ACL (TACL):

- Theoretical research deductive approach
- Empirical research inductive approach
- Applications and tools design and construction
- Resources and evaluation data and method



Theoretical Research

- Formal theories of language and computation
- Studies of models and algorithms in themselves
- Claims justified by formal argument (deductive proofs)
- Often implicit relation to real-world problems and data

Theoretical Research

Satta, G. and Kuhlmann, M. (2013)

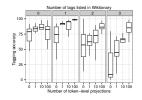
Efficient Parsing for Head-Split Dependency Trees.

Transactions of the Association for Computational Linguistics 1, 267–278.

- Contribution:
 - Parsing algorithms for non-projective deendency trees
 - Added constraints reduce complexity from $O(n^7)$ to $O(n^5)$

Approach:

- Formal description of algorithms
- Proofs of correctness and complexity
- No implementation or experiments
- Empirical analysis of coverage after adding constraints



Empirical Research

- Empirical studies of language and computation
- Studies of models and algorithms applied to data
- Claims justified by experiments and statistical inference
- Explicit relation to real-world problems and data

Empirical Research

Täckström, O., Das, D., Petrov, S., McDonald, R. and Nivre, J. (2013) Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging. *Transactions of the Association for Computational Linguistics* 1, 1–12.

Contribution:

- Latent variable CRFs for unsupervised part-of-speech tagging
- Learning from both type and token constraints

Approach:

- Formal description of mathematical model
- Statistical inference for learning and evaluation
- Multilingual data sets used in experiments

Applications and Tools

- Design and construction of LT systems
- Primarily end-to-end applications (user-oriented)
- Claims often justified by proven experience
- May include experimental evaluation or user study

Applications and Tools

Gotti, F., Langlais, P. and Lapalme, G. (2014)

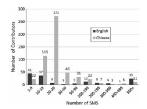
Designing a Machine Translation System for Canadian Weather Warnings: A Case Study. *Natural Language Engineering* 20(3): 399–433.

Contribution:

- In-depth description of design and application development
- Extensive evaluation in the context of application (real users)

Approach:

- Case study concrete instance in context
- Semi-formal system description (flowcharts, examples)
- Statistical inference for evaluation


Resources and Evaluation

Resources

- Collection and annotation of data (for learning and evaluation)
- Design and construction of knowledge bases (grammars, lexica)
 Evaluation
 - Protocols for (empirical) evaluation
 - Intrinsic evaluation task performance
 - Extrinsic evaluation effect on end-to-end application
 - Methodological considerations:
 - Selection of test data (sampling)
 - Evaluation metrics (intrinsic, extrinsic)
 - Significance testing (statistical inference)

Resources and Evaluation

Chen, T. and Kan, M.-Y. (2013)

Creating a Live, Public Short Message Service Corpus:

The NUS SMS Corpus. Language Resources and Evaluation 47:299–335.

- Contribution:
 - ▶ Free SMS corpus in English and Chinese (> 70,000 msgs)
 - Discussion of methodological considerations

Approach:

- Crowdsourcing using mobile phone apps
- Automatic anonymization using regular expressions
- Linguistic annotation as future plans

Language Technology as a Science

Scientific reasoning

- Deduction common in theoretical research
- Induction underlies machine learning and statistical evaluation
- Inference to the best explanation in experimental studies
- Scientific explanation
 - Explanations based on general laws are rare
 - Explanations based on statistical generalizations are the norm
- Reproducibility/replicability
 - Important in theory but problematic in practice
 - Recent initiatives to publish data and software with papers

Fokkens et al. (2013) Offspring from Reproduction Problems: What Replication Failure Teaches Us. In *Proceedings of ACL*, 1691–1701.

Language Technology as a Science

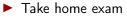
► The "empirical revolution" in language technology

- ▶ Before 1990: Rationalist approaches and qualitative evaluation
- Today: Empirical approaches and quantitative evaluation

What happened?

- Paradigm shift in Kuhn's sense?
- Just another swing of the pendulum?
- Language technology becoming a mature science?

Ethics in Language Technology


Increasing attention in the (larger) community

Some issues raised by Hovy and Spruit:

- Exclusion data bias
- Overgeneralization modeling bias
- Dual-use problems
- First Workshop on Ethics in NLP held in 2017

Coming up

- Handed out: September 13 (afternoon)
- Deadline: September 20
- Anonymous, so do not write your name!
- Studentportalen used for handing out and submitting
- Start thinking about your individual project

Coming up

Literature seminars:

- 2–3 articles to read per seminar
- One person repsonsible for presenting each article
 - short summary
 - main points, strengths, problems, difficulties
 - points of discussion
- Everyone is expected to have read all articles and to contribute to discussions!
- Bring the articles to the semianr (on paper or electronically)
- Rooms on the schedule in the order of groups: UD, mling, aip
- Seminars on October 2 will be moved; each supervisor will discuss new times on Friday

Reminder deadlines etc.

- All course deadlines are strict!
- ▶ Hand in to studentportalen at the latest 23.59. Then it closes.
- Backup deadlines specified on the course web page (not recommended!)

Reminder deadlines etc.

- All course deadlines are strict!
- ▶ Hand in to studentportalen at the latest 23.59. Then it closes.
- Backup deadlines specified on the course web page (not recommended!)
- If you cannot respect a deadline due to extraordinary circumstances, discuss this with your teacher well before the deadline. No exceptions will be given after the deadline!

Reminder deadlines etc.

- All course deadlines are strict!
- ▶ Hand in to studentportalen at the latest 23.59. Then it closes.
- Backup deadlines specified on the course web page (not recommended!)
- If you cannot respect a deadline due to extraordinary circumstances, discuss this with your teacher well before the deadline. No exceptions will be given after the deadline!
- Take home exam:
 - Individual examination
 - No cooperation