
Transition-based
dependency parsing

Syntactic analysis/parsing

2018-02-27

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

Overview

• Arc-factored dependency parsing

Collins’ algorithm

Eisner’s algorithm

• Evaluation of dependency parsers

• Transition-based dependency parsing

The arc-standard algorithm

• Projectivity

• Advanced dependency parsing

Transition-based dependency parsing

Transition-based dependency parsing

• Eisner’s algorithm runs in time O(|w|3).
This may be too much if a lot of data is involved.

• Idea: Design a dumber but really fast algorithm
and let the machine learning do the rest.

• Eisner’s algorithm searches over many different
dependency trees at the same time.

• A transition-based dependency parser only builds
one tree, in one left-to-right sweep over the input.

Transition-based dependency parsing

• The parser starts in an initial configuration.

• At each step, it asks a guide to choose
between one of several transitions (actions)
into new configurations.

• Parsing stops if the parser reaches a
terminal configuration.

• The parser returns the dependency tree
associated with the terminal configuration.

Transition-based dependency parsing

Generic parsing algorithm

Configuration c = parser.getInitialConfiguration(sentence)

while c is not a terminal configuration do

Transition t = guide.getNextTransition(c)

c = c.makeTransition(t)

return c.getGraph()

Transition-based dependency parsing

Variation

Transition-based dependency parsers differ
with respect to the configurations
and the transitions that they use.

Transition-based dependency parsing

The arc-standard algorithm

The arc-standard algorithm

• The arc-standard algorithm is a simple algorithm
for transition-based dependency parsing.

• It is very similar to shift–reduce parsing
as it is known for context-free grammars.

• It is implemented in most practical transition-
based dependency parsers, including MaltParser.

Configurations

A configuration for a sentence w = w1 … wn
consists of three components:

• a buffer containing words of w

• a stack containing words of w

• the dependency graph constructed so far

The arc-standard algorithm

Configurations

• Initial configuration:

• All words are in the buffer.

• The stack is empty.

• The dependency graph is empty.

• Terminal configuration:

• The buffer is empty.

• The stack contains a single word.

The arc-standard algorithm

Possible transitions

• shift (sh): push
the next word in the buffer onto the stack

• left-arc (la): add an arc
from the topmost word on the stack, s1,
to the second-topmost word, s2, and pop s2

• right-arc (ra): add an arc
from the second-topmost word on the stack, s2,
to the topmost word, s1, and pop s1

The arc-standard algorithm

Terminology

• Stack

• S - the full stack

• σ - partial stack

• [σ|i|j] - a generic stack σ, with elements i,j on top (opening to right)

• Buffer

• B - full buffer

• β - partial buffer

• [i|β] - buffer with element i as the first element (opening to left)

The arc-standard algorithm

Configurations and transitions

• Initial configuration: ([],[0,...,n],[])

• Terminal configuration: ([i],[],A)

• shift (sh):
(σ,[i|β],A) ⇒ ([σ|i],β,A)

• left-arc (la):
([σ|i|j],B,A) ⇒ ([σ|j],B,A∪{j,l,i})

• right-arc (ra):
([σ|i|j],B,A) ⇒ ([σ|i],B,A∪{i,l,j})

The arc-standard algorithm

Example run

I booked a flight from LA

Stack Buffer

booked a flightI from LA

The arc-standard algorithm

Example run

I booked a flight from LA

Stack Buffer

booked a flightI from LA

sh

The arc-standard algorithm

Example run

Stack Buffer

booked a flight from LAI

booked a flightI from LA

The arc-standard algorithm

Example run

Stack Buffer

booked a flight from LAI

booked a flightI from LA

sh

The arc-standard algorithm

Example run

booked a flightI from LA

Stack Buffer

I booked a flight from LA

The arc-standard algorithm

Example run

booked a flightI from LA

Stack Buffer

I booked a flight from LA

la-subj

The arc-standard algorithm

Example run

booked a flightI from LA

subj

Stack Buffer

booked a flight from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj

Stack Buffer

booked a flight from LA

sh

The arc-standard algorithm

Example run

Stack Buffer

flight from LAbooked a

booked a flightI from LA

subj

The arc-standard algorithm

Example run

Stack Buffer

flight from LAbooked a

booked a flightI from LA

subj

sh

The arc-standard algorithm

Example run

Stack Buffer

booked a flightI from LA

subj

flightbooked a from LA

The arc-standard algorithm

Example run

Stack Buffer

booked a flightI from LA

subj

la-det

flightbooked a from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj det

Stack Buffer

flightbooked from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj det

Stack Buffer

sh

flightbooked from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj det

Stack Buffer

flightbooked from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj det

Stack Buffer

flightbooked from LA

ra-pmod

The arc-standard algorithm

Example run

Stack Buffer

flightbooked

booked a flightI from LA

subj det pmod

The arc-standard algorithm

Example run

Stack Buffer

ra-dobj

flightbooked

booked a flightI from LA

subj det pmod

The arc-standard algorithm

Example run

Stack Buffer

booked

booked a flightI from LA

subj

dobj

det pmod

The arc-standard algorithm

Example run

Stack Buffer

done!

booked

booked a flightI from LA

subj

dobj

det pmod

The arc-standard algorithm

Complexity and optimality

• Time complexity is linear, O(n), since we only have to
treat each word once

• This can be achieved since the algorithm is greedy, and
only builds one tree, in contrast to Eisner’s algorithm,
where all trees are explored

• There is no guarantee that we will even find the best tree
given the model, the arc-standard model.

• There is a risk of error propagation

• An advantage is that we can use very informative
features, for the ML algorithm

Transition-based dependency parsing

Training a guide

Guides

• We need a guide that tells us what the next
transition should be.

• The task of the guide can be understood as
classification: Predict the next transition (class),
given the current configuration.

Transition-based dependency parsing

Training a guide

• We let the parser run on gold-standard trees.

• Every time there is a choice to make, we simply
look into the tree and do ‘the right thing’™.
(oracle)

• We collect all (configuration, transition) pairs
and train a classifier on them.

• When parsing unseen sentences,
we use the trained classifier as a guide.

Transition-based dependency parsing

Training a guide

• The number of (configuration, transition) pairs
is far too large.

• We define a set of features of configurations
that we consider to be relevant
for the task of predicting the next transition.

Example: word forms of the topmost two words
on the stack and the next two words in the buffer

• We can then describe every configuration
in terms of a feature vector.

Transition-based dependency parsing

Training a guide

score for feature 1

sc
or

e
fo

r
fe

at
ur

e
2

configurations in which
we want to do la

configurations in which
we want to do ra

Transition-based dependency parsing

Training a guide

score for feature 1

sc
or

e
fo

r
fe

at
ur

e
2

classification function
learned by the classifier

la

ra

Transition-based dependency parsing

Training a guide

• In practical systems, we have thousands of
features and hundreds of transitions.

• There are several machine-learning paradigms
that can be used to train a guide for such a task.

Examples: perceptron, decision trees,
support-vector machines, memory-based learning, neural
networks

Transition-based dependency parsing

Example features

• Combinations of addresses and attributes (e.g. those
marked in the table)

• Other features, such as distances, number of children, ...

Transition-based dependency parsing

AttributesAttributesAttributesAttributesAttributes
Adress FORM LEMMA POS FEATS DEPREL
Stack[0] X X X X
Stack[1] X X
Ldep(Stack[0]) X
Rdep(Stack[0]) X
Buffer[0] X X X X
Buffer[1] X
. . .

Training with neural networks

• Neural networks are a good fit for the
classification tasks in transition-based features

• Features can, for instance, be extracted for each
word from recurrent neural networks (RNN)

• RNNs represent each word partially by its
context - useful for parsing!

Transition-based dependency parsing

Alternative transition models

Alternatives

• The arc-standard model as I presented it, is just
one example of a transition model

• In the book you can see another version of
the arc-standard model, where arcs are
added between the topmost word on the
stack and the topmost word on the buffer

• There are many other alternatives

Alternative transition models

Arc-eager model

• Contains four transitions:

• Shift

• Reduce

• Left-arc

• Right-arc

• Advantage: not strictly bottom-up, can create arcs
earlier than in the arc-standard model

• The model that you will implement in assignment 3!

Alternative transition models

Arc-eager model - transitions

• shift:
(σ,[i|β],A) ⇒ ([σ|i],β,A)

• reduce:
([σ|i],B,A) ⇒ (σ,B,A) if (k,l’,i) ∈ A

• left-arc: if (k,l’,i) ∉ A

([σ|i],[j|β],A) ⇒ (σ, [j|β],A∪{j,l,i}) and i ≠ 0

• right-arc:
([σ|i], [j|β],A) ⇒ ([σ|i|j], β,A∪{i,l,j})

Alternative transition models

Arc-eager model - oracle

• From Goldberg & Nivre, CoLING 2012

• A Dynamic Oracle for Arc-Eager Dependency Parsing

Alternative transition models

Algorithm 1 Standard oracle for arc-eager dependency parsing
1: if c = (σ|i, j|β , A) and (j, l, i) 2 Agold then
2: t LEFT-ARCl
3: else if c = (σ|i, j|β , A) and (i, l, j) 2 Agold then
4: t RIGHT-ARCl
5: else if c = (σ|i, j|β , A) and 9k[k < i ^ 9l[(k, l, j) 2 Agold _ (j, l, k) 2 Agold]] then
6: t REDUCE

7: else
8: t SHIFT

9: return t

The first is that it ignores spurious ambiguity in the transition system, that is, cases where a
given dependency tree can be derived in more than one way. The dependency tree in Figure 1
is derived by two distinct transition sequences:3

(1) SH, LASBJ, RAPRD, RAIOBJ, SH, LADET, RE, RADOBJ, RE RAP

(2) SH, LASBJ, RAPRD, RAIOBJ, RE, SH, LADET, RADOBJ, RE RAP

Algorithm 1 will predict (1) but not (2). More generally, whenever there is a SH-RE ambiguity,
which is the only ambiguity that exists in the arc-eager system, the oracle prediction will always
be SH. In this way, the oracle implicitly defines a canonical transition sequence for every tree.

The second limitation is that we have no guarantee for what happens if we apply the oracle to a
configuration that does not belong to the canonical transition sequence. In fact, it is easy to
show that the oracle prediction in such cases can be suboptimal. For example, suppose that
we erroneously choose the SH transition instead of RAIOBJ after the first three transitions in
sequence (1). This results in the following parser configuration:

([0, 2,3], [4, 5,6], {(0, PRD,2), (2, SBJ, 1)})

Starting from this configuration, the oracle defined by Algorithm 1 will predict SH, LADET,
SH, SH, which derives the dependency graph in the left-hand side of Figure 3. Using labeled
attachment score to measure loss, this graph has a loss of 3 compared to the correct tree in
Figure 1, since it fails to include the arcs (2, IOBJ, 3), (2, DOBJ, 5), (2, P, 6).4 However, if we
instead apply the transitions SH, LADET, LADET, RADOBJ, RE, RAP, we end up with the tree in the
right-hand side of Figure 3, which only has a loss of 1.

We say that Algorithm 1 defines a static oracle, because it produces a single static sequence
of transitions that is supposed to be followed in its entirety. The main contribution of this
paper is the notion of a dynamic oracle, which does not presuppose a single canonical transition
sequence for each dependency tree and which can dynamically adapt to arbitrary configurations
that arise during parsing and still make optimal predictions.

3To save space, we sometimes use the following abbreviations: LAl = LEFT-ARCl , RAl = RIGHT-ARCl , RE = REDUCE,
SH = SHIFT.

4In most practical parser implementations, this graph is converted into a tree by adding arcs from the root node to
all words that lack a head. However, the loss will be exactly the same.

963

Transition models in Maltparser

• Nivre family

• Arcs created between stack and buffer

• arc-eager model

• arc-standard (variant from course book)

• Stack family

• Arcs between two topmost words on stack

• arc-standard model (variant from slides)

• models with swap transition (next lecture)

• Other families available as well

Alternative transition models

Projectivity

Projectivity

• A dependency tree is projective if:

• For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that

i →∗ k for every k such that min(i, j) < k <

max(i, j))

Projective and non-projective trees

2 JOAKIM NIVRE

Figure 2. Non-projective dependency tree for an English sentence.

In order to be a well-formed dependency tree, the directed graph must also satisfy the following
conditions:

(1) Root: The dummy root node 0 does not have any incoming arc (that is, there is no arc
of the form (i, l, 0)).

(2) Single-Head: Every node has at most one incoming arc (that is, the arc (i, l, j) rules
out all arcs of the form (k, l0, j) where k 6= i or l0 6= l).

(3) Connected: The graph is weakly connected (that is, in the corresponding undirected
graph there is a path between any two nodes i and j).

In addition, a dependency tree may or may not satisfy the following condition:

(4) Projective: For every arc in the tree, there is a directed path from the head of the
arc to all words occurring between the head and the dependent (that is, the arc (i, l, j)
implies that i !⇤ k for every k such that min(i, j) < k < max(i, j)).

Projectivity is a notion that has been widely discussed in the literature on dependency grammar
and dependency parsing. Broadly speaking, dependency-based grammar theories and annotation
schemes normally do not assume that all dependency trees are projective, because some linguistic
phenomena involving discontinuous structures can only be adequately represented using non-
projective trees. By contrast, many dependency-based syntactic parsers assume that dependency
trees are projective, because it makes the parsing problem considerably less complex. Figure 2
shows a non-projective dependency tree for an English sentence.

The parsing problem for a dependency parser is to find the optimal dependency tree y given
an input sentence x. Note that this amounts to assigning a syntactic head i and a label l to
every node j corresponding to a word x

j

in such a way that the resulting graph is a tree rooted
at the node 0. This makes the parsing problem more constrained than in the case of phrase
structure parsing, as the nodes are given by the input and only the arcs have to be inferred.
In graph-theoretic terms, this is equivalent to finding a spanning tree in the complete graph
G

x

= (V
x

, V
x

⇥ L ⇥ V
x

) containing all possible arcs (i, l, j) (for nodes i, j and labels l), a fact
that is exploited in so-called graph-based models for dependency parsing.

Another di↵erence compared to phrase structure parsing is that there are no part-of-speech
tags in the syntactic representations (because there are no pre-terminal nodes, only terminal
nodes). However, most dependency parsers instead assume that part-of-speech tags are part of
the input, so that the input sentence x actually consists of tokens x1, . . . , xn

annotated with their
parts of speech t1, . . . , tn (and possibly additional information such as lemmas and morphosyn-
tactic features). This information can therefore be exploited in the feature representations used
to select the optimal parse, which turns out to be of crucial importance.

DEPENDENCY PARSING

JOAKIM NIVRE

Contents

1. Dependency Trees 1
2. Arc-Factored Models 3
3. Online Learning 3
4. Eisner’s Algorithm 4
5. Spanning Tree Parsing 6
References 7

A dependency parser analyzes syntactic structure by identifying dependency relations between
words. In this lecture, I will introduce dependency-based syntactic representations (§1), arc-
factored models for dependency parsing (§2), and online learning algorithms for such models
(§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm
for projective dependency parsing (§4) and the Chu-Liu-Edmonds spanning tree algorithm for
non-projective dependency parsing (§5).

1. Dependency Trees

In a dependency tree, a sentence is analyzed by connecting words by binary asymmetrical relations
called dependencies, which are categorized according to the functional role of the dependent word.
Formally speaking, a dependency tree for a sentence x can be defined as a labeled directed graph
G = (V

x

, A), where V
x

= {0, . . . , n} is a set of nodes, one for each position of a word x
i

in the
sentence plus a node 0 corresponding to a dummy word root at the beginning of the sentence,
and where A ✓ (V

x

⇥L⇥V
x

) is a set of labeled arcs of the form (i, l, j), where i and j are nodes
and l is a label taken from some inventory L. Figure 1 shows a typical dependency tree for an
English sentence with a dummy root node.

Date: 2013-03-01.

Figure 1. Dependency tree for an English sentence with dummy root node.

1

Projectivity and dependency parsing

• Many dependency parsing algorithms can only
handle projective trees

• Including all algorithms we have discussed in
detail

• Non-projective trees do occur in natural
language

• How often depends on language (and
treebank)

Non-projective dependency parsing

• Variants of transition-based parsing

• Using a swap-transition (next lecture)

• Graph-based parsing

• Minimum spanning tree algorithms (next lecture)

• Post processing

• Pseudo-projective parsing (seminar 2)

• Approximate non-projective parsing

Summary

• In transition-based dependency parsing
one does not score graphs but computations,
sequences of (configuration, transition) pairs.

• In its simplest form, transition-based dependency
parsing uses classification.

• One specific instance of transition-based
dependency parsing is the arc-standard algorithm.

The end of the course

• Last lecture (Joakim Nivre)

• Seminar 2, Pseudo-projective parsing

• Assignments

• Project

• Supervision on demand, mainly by email

• Plan you workload carefully!

• Course evaluation in the student portal

Final assignments

• Assignment 2: Summarize and discuss two research articles
(Mar 7)

• Assignment 3: Implement parts of arc-eager transition-
based parser (Mar 26)

• Supervision on demand by Sara for assignments

• Project (Mar 26)

• You will soon be assigned a supervisor and receive
feedback on your proposal

• Supervision on demand by your supervisor

