UPPSALA
UNIVERSITET

Transition-based
dependency parsing

Syntactic analysis/parsing

2018-02-27

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

UPPSALA

UNIVERSITET Ove rVi eW

* Transition-based dependency parsing
The arc-standard algorithm
* Projectivity

* Advanced dependency parsing

UPPSALA
UNIVERSITET

Transition-based dependency parsing

UPPSALA
UNIVERSITET

Transition-based dependency parsing

* Eisner’s algorithm runs in time O(|w/3).
This may be too much if a lot of data is involved.

* |dea: Design a dumber but really fast algorithm
and let the machine learning do the rest.

* Eisner’s algorithm searches over many different
dependency trees at the same time.

* A transition-based dependency parser only builds
one tree, in one left-to-right sweep over the input.

UPPSALA
UNIVERSITET

Transition-based dependency parsing

Transition-based dependency parsing

* The parser starts in an initial configuration.

* At each step, it asks a guide to choose
between one of several transitions (actions)
into new configurations.

* Parsing stops if the parser reaches a
terminal configuration.

* The parser returns the dependency tree
associated with the terminal configuration.

Transition-based dependency parsing

UPPSALA

wvesrer Generic parsing algorithm

Configuration ¢ = parser.getInitialConfiguration(sentence)
while ¢ is not a terminal configuration do

Transition t = guide.getNextTransition(c)

c = c.makeTransition(t)

return c.getGraph()

Transition-based dependency parsing

UPPSALA

UNIVERSITET Va. riatiOn

Transition-based dependency parsers differ
with respect to the configurations
and the transitions that they use.

UPPSALA
UNIVERSITET

The arc-standard algorithm

UPPSALA

swersrer | he arc-standard algorithm

* The arc-standard algorithm is a simple algorithm
for transition-based dependency parsing.

* ltis very similar to shift—reduce parsing
as it is known for context-free grammars.

* |t is implemented in most practical transition-
based dependency parsers, including MaltParser.

The arc-standard algorithm

UPPSALA

avesmer Configurations

A configuration for a sentence w =w| ... w,
consists of three components:

* a buffer containing words of w
* a stack containing words of w

* the dependency graph constructed so far

The arc-standard algorithm

UPPSALA

avesmer Configurations

* Initial configuration:

* All words are in the buffer.

* The stack is empty.

* The dependency graph is empty.
* Terminal configuration:

* The buffer is empty.

* The stack contains a single word.

The arc-standard algorithm

UPPSALA

owversirer POSSible transitions

* shift (sh): push
the next word in the buffer onto the stack

* left-arc (la): add an arc
from the topmost word on the stack, si,
to the second-topmost word, s, and pop s2

* right-arc (ra): add an arc
from the second-topmost word on the stack, s,
to the topmost word, s|, and pop s

The arc-standard algorithm

UPPSALA

owversiter — lerminology

e Stack

e S - the full stack

* O - partial stack
* [0lilj] - a generic stack T, with elements i,j on top (opening to right)

o PBuffer

B - full buffer

« P - partial buffer

* [i|B] - buffer with element i as the first element (opening to left)

The arc-standard algorithm

UPPSALA

avesrer Configurations and transitions

* Initial configuration: ([],[O0,...,n],[])

* Terminal configuration: ([i],[],A)

* shift (sh):
(0:[iIB1.A) = ([ali].B.A)

* left-arc (la):
([O1ilj].B.A) = ([T]j].B,AUY:Li})

* right-arc (ra):
([oili.B.,A) = ([O1i].B.,AULj})

UPPSALA
UNIVERSITET

Stack

I booked

The arc-standard algorithm

Example run

Buffer

booked

flight

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

booked

flight

from LA

I booked a

flight

from LA

UPPSALA

wviser EXample run

Stack

I booked

The arc-standard algorithm

Buffer

booked

flight

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

flight

from LA

I booked a

flight

from LA

UPPSALA

The arc-standard algorithm

wviser EXample run

Stack

booked

I booked

Buffer

flight

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

=] [

flight

from LA

I booked a

flight

from LA

UPPSALA
UNIVERSITET

Stack

l— subj
|

The arc-standard algorithm

Example run

booked

-

booked

Buffer

flight

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

flight

from LA

a

P

booked a

flight

from LA

UPPSALA
UNIVERSITET

Stack

l— subj
|

The arc-standard algorithm

Example run

booked

-

booked

Buffer

flight

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

] [

from LA

P

booked a

flight

from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

Stack

booked

flight

l— subj
|

-

booked

Buffer

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

0] [

P

booked a

flight

from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

Stack

booked

flight

' o

booked

Buffer

from LA

a o

flight

from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

flight from LA

v o ' o

booked flight from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

Stack
booked flight from LA
r SUb] _‘
booked

Buffer

a o

flight

from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

v o ' o

booked flight from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

Stack

booked

flight

l— subj
|

-

booked

Buffer

r det

a

flight

pmod j

from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

T

booked a

flight

pmod j

from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

Stack

l— subj
|

booked

-

booked

Buffer

dobj

r det

a

!
flight

pmod j

from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

dobj
r SUbj _‘ r det
I booked a

v
flight

pmod j

from LA

UPPSALA
UNIVERSITET

Transition-based dependency parsing

Complexity and optimality

* Time complexity is linear, O(n), since we only have to
treat each word once

* This can be achieved since the algorithm is greedy, and
only builds one tree, in contrast to Eisner’s algorithm,
where all trees are explored

* There is no guarantee that we will even find the best tree
given the model, the arc-standard model.

* There is a risk of error propagation

* An advantage is that we can use very informative
features, for the ML algorithm

UPPSALA
UNIVERSITET

Training a guide

Transition-based dependency parsing

UPPSALA o
UNIVERSITET G U I d es

* We need a guide that tells us what the next
transition should be.

* The task of the guide can be understood as
classification: Predict the next transition (class),
given the current configuration.

UPPSALA
UNIVERSITET

Transition-based dependency parsing

Training a guide

* We let the parser run on gold-standard trees.

* Every time there is a choice to make, we simply
look into the tree and do ‘the right thing’ ™.

(oracle)

* We collect all (configuration, transition) pairs
and train a classifier on them.

* When parsing unseen sentences,
we use the trained classifier as a guide.

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* The number of (configuration, transition) pairs
is far too large.

* We define a set of features of configurations
that we consider to be relevant
for the task of predicting the next transition.

Example: word forms of the topmost two words
on the stack and the next two words in the buffer

* We can then describe every configuration
in terms of a feature vector.

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

configurations in which
we want to do la AN

score for feature 2

< . configurations in which
we want to do ra

score for feature |

UPPSALA
UNIVERSITET

Transition-based dependency parsing

Training a guide

score for feature 2

ra

score for feature |

classification function
learned by the classifier

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* In practical systems, we have thousands of
features and hundreds of transitions.

* There are several machine-learning paradigms
that can be used to train a guide for such a task.

Examples: perceptron, decision trees,

support-vector machines, memory-based learning, neural
networks

UPPSALA

Transition-based dependency parsing

wvester EXample features

Attributes
Adress FORM | LEMMA | POS | FEATS | DEPREL
Stack[0] X X X X
Stack[1] X X
Ldep(Stack[0]) X
Rdep(Stack[0]) X
Buffer[0] X X X X
Buffer[1] X

* Combinations of addresses and attributes (e.g. those

marked in the table)

e Other features, such as distances, number of children, ...

Transition-based dependency parsing

UPPSALA

swersrer— [raining with neural networks

* Neural networks are a good fit for the
classification tasks in transition-based features

 Features can, for instance, be extracted for each
word from recurrent neural networks (RNN)

* RNNs represent each word partially by its
context - useful for parsing!

UPPSALA
UNIVERSITET

Alternative transition models

UPPSALA
UNIVERSITET

Alternative transition models

Alternatives

* The arc-standard model as | presented it, is just
one example of a transition model

* In the book you can see another version of
the arc-standard model, where arcs are
added between the topmost word on the
stack and the topmost word on the buffer

* There are many other alternatives

Alternative transition models

UPPSALA

wvesmer Arc-eager model

* Contains four transitions:
 Shift
* Reduce
e Left-arc
* Right-arc

* Advantage: not strictly bottom-up, can create arcs
earlier than in the arc-standard model

* The model that you will implement in assignment 3!

Alternative transition models

UPPSALA

ovesmer Arc-eager model - transitions

e shift;

(0.[i|BLA) = ([O]iL.B.A)

* reduce:

([ali],B,A) = (0,B,A) if (k,I',i) € A
 left-arc: if (k,I',i) ¢ A
([O1L.LIBLA) = (o, [i|BLAUjLi}) and i#0

* right-arc:

([o1i. [iIBL.A) = ([oilil. B.AU{i.Li})

Alternative transition models

UPPSALA

wvesmer Arc-eager model - oracle

Algorithm 1 Standard oracle for arc-eager dependency parsing

if c = (oli, j|B,A) and (j,[,1) € Ayyq then
t <« LEFT-ARC;
else if c = (o|i, jI,A) and (i, 1, j) € Agyq then
t < RIGHT-AR(;
else if c = (o|i, j|5,A) and dk[k <i Adl[(k,l,]) EAgoa V (J,1, k) €Ay q]] then
t < REDUCE
else
t < SHIFT
return t

oD Rk

* From Goldberg & Nivre, CoLING 2012

* A Dynamic Oracle for Arc-Eager Dependency Parsing

Alternative transition models

UPPSALA

swersrer— 1ransition models in Maltparser

* Nivre family

* Arcs created between stack and buffer

* arc-eager model

* arc-standard (variant from course book)

* Stack family

* Arcs between two topmost words on stack
* arc-standard model (variant from slides)

* models with swap transition (next lecture)

e Other families available as well

UPPSALA
UNIVERSITET

Projectivity

UPPSALA

oversirer Projectivity

* A dependency tree is projective if:

* For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that

i = * k for every k such that min(i,) < k <

max(i, j))

UPPSALA

swesiter Projective and non-projective trees

PU

PRED
OB}

ROOT Economic news had little effect on financial markets

ATT SBJ

PU

PC

ATT

¥ N\ 2

ROOT A hearing S scheduled on the issue today

UPPSALA

sversrer Projectivity and dependency parsing

* Many dependency parsing algorithms can only
handle projective trees

* Including all algorithms we have discussed in
detail

* Non-projective trees do occur in natural
language

* How often depends on language (and
treebank)

UPPSALA

st INon-projective dependency parsing

* Variants of transition-based parsing

* Using a swap-transition (next lecture)
* Graph-based parsing

* Minimum spanning tree algorithms (next lecture)
* Post processing

* Pseudo-projective parsing (seminar 2)

* Approximate non-projective parsing

UPPSALA

oaversrer QUMIMAry

* |n transition-based dependency parsing
one does not score graphs but computations,
sequences of (configuration, transition) pairs.

* In its simplest form, transition-based dependency
parsing uses classification.

* One specific instance of transition-based
dependency parsing is the arc-standard algorithm.

UPPSALA
UNIVERSITET

The end of the course

* Last lecture (Joakim Nivre)

* Seminar 2, Pseudo-projective parsing

* Assignments

* Project

* Supervision on demand, mainly by email
* Plan you workload carefully!

* Course evaluation in the student portal

UPPSALA
UNIVERSITET

Final assighments

* Assignment 2: Summarize and discuss two research articles
(Mar 7)

* Assignment 3: Implement parts of arc-eager transition-
based parser (Mar 26)

* Supervision on demand by Sara for assignments
* Project (Mar 26)

* You will soon be assigned a supervisor and receive

feedback on your proposal

* Supervision on demand by your supervisor

