
The Earley Algorithm

Syntactic analysis/parsing

2018-02-02

Sara Stymne
Department of Linguistics and Philology

Based on slides by Marco Kuhlmann

Recap: Treebank grammars, evaluation

Treebanks

• Treebanks are corpora in which each sentence has
been annotated with a syntactic analysis.

• Producing a high-quality treebank
is both time-consuming and expensive.

• One of the most widely known treebanks
is the Penn TreeBank (PTB).

The Penn Treebank

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))

 (, ,)
 (ADJP

 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))

 (VP (MD will)
 (VP (VB join)

 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))

 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

Treebank grammars

• Given a treebank, we can construct a grammar
by reading rules off the phrase structure trees.

• A treebank grammar will account for
all analyses in the treebank.

• It will also account for sentences
that were not observed in the treebank.

Treebank grammars

• The simplest way to obtain rule probabilities
is relative frequency estimation.

• Step 1: Count the number of occurrences
of each rule in the treebank.

• Step 2: Divide this number by the total number of
rule occurrences for the same left-hand side.

Parse evaluation measures

• Precision:
Out of all brackets found by the parser,
how many are also present in the gold standard?

• Recall:
Out of all brackets in the gold standard,
how many are also found by the parser?

• F1-score:
harmonic mean between precision and recall:
2 × precision × recall / (precision + recall)

Parser evaluation measures

0

25

50

75

100

stupid half, CKY full CKY state of the art

90

70

62

5

The Earley algorithm

Parse trees

leaves (bottom)

prefer

a

morning

flightNoun

Nom Noun

NomDet

NPVerb

I

Pro

VPNP

S root (top)

The Earley algorithm

Top–down and bottom–up

top–down

only build trees that have S at the root node

may lead to trees that do not yield the sentence

bottom–up

only build trees that yield the sentence

may lead to trees that do not have S at the root

The Earley algorithm

CKY versus Earley

• The CKY algorithm has two disadvantages:

• It can only handle restricted grammars.

• It does not use top–down information.

• The Earley algorithm does not have these:

• It can handle arbitrary grammars.

• Is does use top–down information.

• On the downside, it is more complicated.

The Earley algorithm

The algorithm

• Start with the start symbol S.

• Take the leftmost nonterminal and
predict all possible expansions.

• If the next symbol in the expansion is a word,
match it against the input sentence (scan);
otherwise, repeat.

• If there is nothing more to expand,
the subtree is complete; in this case,
continue with the next incomplete subtree.

The Earley algorithm

Dotted rules

• A dotted rule is a partially processed rule.

Example: S → NP • VP

• The dot can be placed in front of the first
symbol, behind the last symbol, or between two
symbols on the right-hand side of a rule.

• The general form of a dotted rule thus is
A → α • β , where A → αβ is the original,
non-dotted rule.

The Earley algorithm

Example run

0 I 1 prefer 2 a 3 morning 4 flight 5

S [0, 0]

Predict the rule S → • NP VP

The Earley algorithm

Example run

VPNP

S [0, 0]

[0, 0]

0 I 1 prefer 2 a 3 morning 4 flight 5

Predict the rule NP → • Pro

The Earley algorithm

S → • NP VP

Example run

Pro

VPNP

S [0, 0]

[0, 0]

[0, 0]

0 I 1 prefer 2 a 3 morning 4 flight 5

Predict the rule Pro → • I

The Earley algorithm

NP → • Pro

S → • NP VP

Example run

I

Pro

VPNP

S [0, 0]

[0, 0]

[0, 0]

[0, 0]

0 I 1 prefer 2 a 3 morning 4 flight 5

Scan this word

The Earley algorithm

Pro → • I

NP → • Pro

S → • NP VP

Example run

0 I 1 prefer 2 a 3 morning 4 flight 5

The Earley algorithm

Pro → • I

NP → • Pro

I

Pro

VPNP

S [0, 0]

[0, 0]

[0, 0]

[0, 1]

Update the dot

S → • NP VP

Example run

0 I 1 prefer 2 a 3 morning 4 flight 5

The Earley algorithm

Pro → I •

NP → • Pro

The predicted rule is complete.

I

Pro

VPNP

S [0, 0]

[0, 0]

[0, 1]

[0, 1]

S → • NP VP

Example run

0 I 1 prefer 2 a 3 morning 4 flight 5

I

Pro

VPNP

S [0, 1]

[0, 1]

[0, 1]

[0, 1]

The Earley algorithm

S → NP • VP

Example run

0 I 1 prefer 2 a 3 morning 4 flight 5

I

Pro

VPNP

S [0, 1]

[0, 1]

[0, 1]

[0, 1]

[1, 1]

The Earley algorithm

S → NP • VP

Example run

0 I 1 prefer 2 a 3 morning 4 flight 5

prefer

a

morning

flightNoun

Nom Noun

NomDet

NPVerb

I

Pro

VPNP

S [0, 5]

[0, 1]

[0, 1]

[0, 1]

[1, 5]

[1, 2]

[1, 2]

[2, 3]

[2, 3]

[3, 4]

[3, 4]

[3, 4]

[4, 5]

[4, 5]

[3, 5]

[2, 5]

Update the dot

The Earley algorithm

S → NP • VP

Example run

prefer

a

morning

flightNoun

Nom Noun

NomDet

NPVerb

I

Pro

VPNP

S [0, 5]

[0, 1]

[0, 1]

[0, 1]

[1, 5]

[1, 2]

[1, 2]

[2, 3]

[2, 3]

[3, 4]

[3, 4]

[3, 4]

[4, 5]

[4, 5]

[3, 5]

[2, 5]

The Earley algorithm

0 I 1 prefer 2 a 3 morning 4 flight 5

The algorithm

• Start with the start symbol S.

• Take the leftmost nonterminal and
predict all possible expansions.

• If the next symbol in the expansion is a word (or POS),
match it against the input sentence (scan);
otherwise, repeat.

• If there is nothing more to expand,
the subtree is complete; in this case,
continue with the next incomplete subtree.

The Earley algorithm

Chart entries

• The chart contains entries of the form
[min, max, A → α • β], where min and max
are positions in the input
and A → α • β is a dotted rule.

• Such an entry says: ‘We have built a parse tree
whose first rule is A → αβ and where
the part of this rule that corresponds to α
covers the words between min and max.’

The Earley algorithm

Chart

• Earley parsing also uses a chart

• An array of n+1 ”lists”

• The ”lists” are ordered sets

• Could be thought of as a queue without
duplicates

• The chart entries are organized into the
respective lists by the max index

The Earley algorithm

Inference rules

[i, j, A → α • a β]

[i, j + 1, A → α a • β]
wj = a

Complete

[0, 0, S → • α]Axiom

Scan

[i, j, A → α • B β] [j, k, B → γ •]
[i, k, A → α B • β]

Predict [i, j, A → α • B β]

[j, j, B → • γ]
B → γ

S → α

The Earley algorithm

Pseudo code 1

The Earley algorithm

Pseudo code 2

The Earley algorithm

Recogniser/parser

• When parsing is complete, is there a chart entry?
[0, n, S → α •]

• Recognizer

• If we want a parser, we have to add back
pointers, and retrieve a tree

• Earley’s algorithm can be used for PCFGs, but it is
more complicated than for CKY

The Earley algorithm

Summary

• The Earley algorithm is a parsing algorithm
for arbitrary context-free grammars.

• In contrast to the CKY algorithm,
it also uses top–down information.

• Also in contrast to the CKY algorithm,
its probabilistic extension is not straightforward.

• Reading: J&M 13.4.2

Course overview

• Lecture + supervision: Tuesday Feb 6

• Seminar 1, Wednesday Feb 14

• 9-12

• You will be divided into groups, that each have a
1-hour seminar

• Groups will be posted on the course page

• Discussion points for the article will be posted!

