
Advanced Dependency Parsing

Joakim Nivre

Uppsala University
Linguistics and Philology

Based on tutorials with Ryan McDonald

Advanced Dependency Parsing 1(36)

Introduction

Plan for the Lecture

1. Graph-based vs. transition-based dependency parsing

2. Advanced graph-based parsing techniques
I Higher order models
I Non-projective parsing

3. Advanced transition-based parsing techniques
I Beam search
I Dynamic oracles
I Non-projective parsing

Advanced Dependency Parsing 2(36)

Graph-Based vs. Transition-Based Dependency Parsing

Graph-Based Parsing

I Basic idea:
I Define a space of candidate dependency trees for a sentence
I Learning: Induce a model for scoring an entire dependency tree

for a sentence
I Parsing: Find the highest-scoring dependency tree, given the

induced model

I Characteristics:
I Global learning of a model for optimal dependency trees
I Exhaustive search during parsing (exact)

Advanced Dependency Parsing 3(36)

Graph-Based vs. Transition-Based Dependency Parsing

Graph-Based Parsing Trade-Off

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I For example, first-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp

Advanced Dependency Parsing 4(36)

Graph-Based vs. Transition-Based Dependency Parsing

Transition-Based Parsing

I Basic idea:
I Define a transition system (state machine) for mapping a

sentence to its dependency graph
I Learning: Induce a model for predicting the next state

transition, given the transition history
I Parsing: Construct the optimal transition sequence, given the

induced model

I Characteristics:
I Local learning of a model for optimal transitions
I Greedy best-first search (heuristic)

Advanced Dependency Parsing 5(36)

Graph-Based vs. Transition-Based Dependency Parsing

Transition-Based Parsing Trade-Off

I Advantages:
I Highly efficient parsing – linear time complexity
I Rich history-based feature representations – no rigid

constraints from parsing algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

Advanced Dependency Parsing 6(36)

Graph-Based vs. Transition-Based Dependency Parsing

Error Analysis [McDonald and Nivre 2007]

10 20 30 40 50 50+
Sentence Length (bins of size 10)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

De
pe

nd
en

cy
 A

cc
ur

ac
y MSTParser

MaltParser

I MaltParser is more accurate than MSTParser for short
sentences (1–10 words) but its performance degrades more
with increasing sentence length

Advanced Dependency Parsing 7(36)

Graph-Based vs. Transition-Based Dependency Parsing

Error Analysis [McDonald and Nivre 2007]

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

I MaltParser is more precise than MSTParser for short
dependencies (1–3 words) but its performance degrades
drastically with increasing dependency length (> 10 words)

I MSTParser has more or less constant precision for
dependencies longer than 3 words

I Recall is very similar across systems

Advanced Dependency Parsing 8(36)

Advanced Graph-Based Parsing Techniques

Plan for the Lecture

1. Graph-based vs. transition-based dependency parsing

2. Advanced graph-based parsing techniques
I Higher order models
I Non-projective parsing

3. Advanced transition-based parsing techniques
I Beam search
I Dynamic oracles
I Non-projective parsing

4. Neural networks in dependency parsing

Advanced Dependency Parsing 9(36)

Advanced Graph-Based Parsing Techniques

Higher-Order Models

I Two main dimensions of higher-order models
I Vertical: e.g., “remain” is the grandparent of “emeritus”
I Horizontal: e.g., “remain” is first child of “will”

Advanced Dependency Parsing 10(36)

Advanced Graph-Based Parsing Techniques

2nd-Order Horizontal Projective Parsing

I Score factors by pairs of horizontally adjacent arcs

I Often called sibling dependencies

I s(i , j , j ′) = score of adjacent arcs xi → xj and xi → xj ′

s(T) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

= . . . + s(i0, i1, i2) + s(i0, i2, i3) + . . . + s(i0, ij−1, ij) +

s(i0, ij+1, ij+2) + . . . + s(i0, im−1, im) + . . .

Advanced Dependency Parsing 11(36)

Advanced Graph-Based Parsing Techniques

Higher-Order Projective Parsing

I People played this game since 2006
I McDonald and Pereira [2006] (2nd-order sibling)
I Carreras [2007] (2nd-order sibling and grandparent)
I Koo and Collins [2010] (3rd-order grand-sibling and tri-sibling)
I Ma and Zhao [2012] (4th-order grand-tri-sibling+)

h m h ms

g mh

HORIZONTAL CONTEXT

V
E

R
TI

C
A

L
C

O
N

TE
X

T

* From Koo et al. 2010 presentation

h mss’

g mh s

1

1

2

32

O(n3) O(n3)

O(n4) O(n4)

O(n4)

h mss’

O(n5)g

Advanced Dependency Parsing 12(36)

Advanced Graph-Based Parsing Techniques

Parsing Algorithms

I Eisner’s algorithm can be generalized to higher orders
I But there is a price to pay:

I Specialized chart items and combination rules
I Time complexity increases for every added order
I Anything beyond 2nd-order is too slow in practice

I Remember basic trade-off:
I Global training and exact inference – local feature scope
I Increasing feature scope makes exact inference harder

I This has led to research on approximate graph-based parsing

Advanced Dependency Parsing 13(36)

Advanced Graph-Based Parsing Techniques

Non-Projective Parsing

I First-order model – equivalent to MST problem
I Chu-Liu-Edmonds’ algorithm:

I Construct a graph with the highest-scoring head for each word
I If this is a tree, it must be the MST
I If not, contract a cycle and recurse on smaller graph

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This does not generalize to higher orders – no exact algorithm

Advanced Dependency Parsing 14(36)

Advanced Graph-Based Parsing Techniques

Non-Projective Parsing

I First-order model – equivalent to MST problem
I Chu-Liu-Edmonds’ algorithm:

I Construct a graph with the highest-scoring head for each word
I If this is a tree, it must be the MST
I If not, contract a cycle and recurse on smaller graph

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This does not generalize to higher orders – no exact algorithm

Advanced Dependency Parsing 14(36)

Advanced Transition-Based Parsing Techniques

Plan for the Lecture

1. Graph-based vs. transition-based dependency parsing

2. Advanced graph-based parsing techniques
I Higher order models
I Non-projective parsing

3. Advanced transition-based parsing techniques
I Beam search
I Dynamic oracles
I Non-projective parsing

4. Neural networks in dependency parsing

Advanced Dependency Parsing 15(36)

Advanced Transition-Based Parsing Techniques

Greedy Search

I Take the single best action at any point (given by oracle o):

Parse(w1, . . . ,wn)
1 c ← ([]S , [0, 1, . . . , n]B , { })
2 while Bc 6= []
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Maximally efficient – linear time complexity

I Sensitive to search errors and error propagation

Advanced Dependency Parsing 16(36)

Advanced Transition-Based Parsing Techniques

Beam Search

I Maintain the k best hypotheses [Johansson and Nugues 2006]:

Parse(w1, . . . ,wn)
1 Beam ← {([]S , [0, 1, . . . , n]B , { })}
2 while ∃c ∈ Beam [Bc 6= []]
3 foreach c ∈ Beam
4 foreach t
5 Add(t(c), NewBeam)
6 Beam ← Top(k, NewBeam)
7 return G = ({0, 1, . . . , n},ATop(1, Beam))

I Note:
I Pruning the beam requires that we score transition sequences
I Global learning to maximize score of entire sequence

Advanced Dependency Parsing 17(36)

Advanced Transition-Based Parsing Techniques

Beam Size

[Zhang and Clark 2008]

Advanced Dependency Parsing 18(36)

Advanced Transition-Based Parsing Techniques

The Best of Two Worlds?

I Like graph-based dependency parsing:
I Global learning – minimize loss over entire sentence
I Non-greedy search – accuracy increases with beam size

I Like (old school) transition-based parsing:
I Highly efficient – complexity still linear for fixed beam size
I Rich features – no constraints from parsing algorithm

Advanced Dependency Parsing 19(36)

Advanced Transition-Based Parsing Techniques

Precision by Dependency Length

2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9 MST
Malt
ZPar

[Zhang and Nivre 2012]

Advanced Dependency Parsing 20(36)

Advanced Transition-Based Parsing Techniques

Dynamic Oracles

I Beam search helps because it explores the search space
I At parsing time, the parser can recover from early bad decisions
I At training time, the parser can learn to avoid costly mistakes

I Can the parser benefit from exploration only at training time?
I Yes – but we need dynamic oracles for training
I Then we can improve greedy parsing for maximum speed

Advanced Dependency Parsing 21(36)

Advanced Transition-Based Parsing Techniques

Online Learning with a Conventional Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([], [0, 1, . . . , nj], { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← o(c,Ti)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← to(c)
11 return w

I Oracle o(c,Ti) returns the optimal transition for c and Ti

Advanced Dependency Parsing 22(36)

Advanced Transition-Based Parsing Techniques

Online Learning with a Conventional Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([], [0, 1, . . . , nj], { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← o(c,Ti)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← to(c)
11 return w

I Oracle o(c,Ti) returns the optimal transition for c and Ti

Advanced Dependency Parsing 22(36)

Advanced Transition-Based Parsing Techniques

Conventional Oracle for Arc-Eager Parsing

o(c,T) =


Left-Arc if top(Sc) ← first(Bc) in T
Right-Arc if top(Sc) → first(Bc) in T
Reduce if ∃v < top(Sc) : v ↔ first(Bc) in T
Shift otherwise

I Correct:
I Derives T in a configuration sequence Co,T = c0, . . . , cm

I Problems:
I Deterministic: Ignores other derivations of T
I Incomplete: Valid only for configurations in Co,T

Advanced Dependency Parsing 23(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions:

Stack Buffer Arcs

[] [ROOT, He, sent, her, a, letter, .]

He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH

Stack Buffer Arcs

[ROOT] [He, sent, her, a, letter, .]

He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH

Stack Buffer Arcs

[ROOT, He] [sent, her, a, letter, .]

He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA

Stack Buffer Arcs

[ROOT] [sent, her, a, letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA

Stack Buffer Arcs

[ROOT, sent] [her, a, letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA

Stack Buffer Arcs

[ROOT, sent, her] [a, letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA-SH

Stack Buffer Arcs

[ROOT, sent, her, a] [letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA-SH-LA

Stack Buffer Arcs

[ROOT, sent, her] [letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA-SH-LA-RE

Stack Buffer Arcs

[ROOT, sent] [letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA-SH-LA-RE-RA

Stack Buffer Arcs

[ROOT, sent, letter] [.] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA-SH-LA-RE-RA-RE

Stack Buffer Arcs

[ROOT, sent] [.] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions: SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

Stack Buffer Arcs

[ROOT, sent, .] [] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 24(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA

Stack Buffer Arcs

[ROOT, sent, her] [a, letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA-RE

Stack Buffer Arcs

[ROOT, sent] [a, letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA-RE-SH

Stack Buffer Arcs

[ROOT, sent, a] [letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA-RE-SH-LA

Stack Buffer Arcs

[ROOT, sent] [letter, .] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA-RE-SH-LA-RA

Stack Buffer Arcs

[ROOT, sent, letter] [.] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA-RE-SH-LA-RA-RE

Stack Buffer Arcs

[ROOT, sent] [.] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Determinisim

Transitions:
SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-RA-RE-SH-LA-RA-RE-RA

Stack Buffer Arcs

[ROOT, sent, .] [] He
sbj←− sent

ROOT
root−→ sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 25(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA

Stack Buffer Arcs

[ROOT, sent] [her, a, letter, .] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH

Stack Buffer Arcs

[ROOT, sent, her] [a, letter, .] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH

Stack Buffer Arcs

[ROOT, sent, her, a] [letter, .] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA

Stack Buffer Arcs

[ROOT, sent, her] [letter, .] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH

Stack Buffer Arcs

[ROOT, sent, her, letter] [.] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH-SH [3/6]

Stack Buffer Arcs

[ROOT, sent, letter, .] [] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA

Stack Buffer Arcs

[ROOT, sent, her] [letter, .] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA

Stack Buffer Arcs

[ROOT, sent] [letter, .] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA-RA

Stack Buffer Arcs

[ROOT, sent, letter] [.] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA-RA-RE

Stack Buffer Arcs

[ROOT, sent] [.] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Non-Optimality

Transitions:

SH-SH-LA-RA-RA-SH-LA-RE-RA-RE-RA

SH-SH-LA-RA-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA-RA-RE-RA [5/6]

Stack Buffer Arcs

[ROOT, sent, .] [] He
sbj←− sent

ROOT
root−→ sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .ROOT She sent him a letter .

ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Dependency Parsing 26(36)

Advanced Transition-Based Parsing Techniques

Dynamic Oracles

I Optimality:
I A transition is optimal if the best tree remains reachable
I Best tree = argminT ′ L(T ,T ′)

I Oracle:
I Boolean function o(c, t,T) = true if t is optimal for c and T
I Non-deterministic: More than one transition can be optimal
I Complete: Correct for all configurations

I New problem:
I How do we know which trees are reachable?
I Easy for some transition systems (called arc-decomposable)

Advanced Dependency Parsing 27(36)

Advanced Transition-Based Parsing Techniques

Oracles for Arc-Decomposable Systems

o(c, t,T) =

{
true if [R(c) − R(t(c))] ∩ T = ∅
false otherwise

where R(c) ≡ {a | a is an arc reachable in c }

Arc-Eager

o(c, LA,T) =

{
false if ∃w ∈ Bc : s ↔ w ∈ T (except s ← b)
true otherwise

o(c,RA,T) =

{
false if ∃w ∈ Sc : w ↔ b ∈ T (except s → b)
true otherwise

o(c,RE,T) =

{
false if ∃w ∈ Bc : s → w ∈ T
true otherwise

o(c, SH,T) =

{
false if ∃w ∈ Sc : w ↔ b ∈ T
true otherwise

Notation: s = node on top of the stack S

b = first node in the buffer B

Advanced Dependency Parsing 28(36)

Advanced Transition-Based Parsing Techniques

Online Learning with a Dynamic Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([]S , [w1, . . . ,wnj]B , { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← argmaxt∈{t|o(c,t,Ti)}w · f(c, t)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← choice(to(c), t∗(c))
11 return w

I Ambiguity: use model score to break ties
I Exploration: follow model prediction even if not optimal

Advanced Dependency Parsing 29(36)

Advanced Transition-Based Parsing Techniques

Online Learning with a Dynamic Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([]S , [w1, . . . ,wnj]B , { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← argmaxt∈{t|o(c,t,Ti)}w · f(c, t)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← choice(to(c), t∗(c))
11 return w

I Ambiguity: use model score to break ties
I Exploration: follow model prediction even if not optimal

Advanced Dependency Parsing 29(36)

Advanced Transition-Based Parsing Techniques

[Goldberg and Nivre 2012]

Advanced Dependency Parsing 30(36)

Advanced Transition-Based Parsing Techniques

Non-Projective Parsing

I Standard transition systems only derive projective trees
I Approaches to non-projective transition-based parsing:

I Pseudo-projective parsing [Nivre and Nilsson 2005]
I Non-adjacent arc transitions

[Covington 2001, Attardi 2006, Nivre 2007]
I Online reordering [Nivre 2009, Nivre et al. 2009]

Advanced Dependency Parsing 31(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 32(36)

Advanced Transition-Based Parsing Techniques

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [w0,w1, . . . ,wn], { }) (w0 = ROOT)

Terminal: ([0], [],A)

Shift: (S ,wi |B,A) ⇒ (S |wi ,B,A)

Right-Arc(l): (S |wi |wj ,B,A) ⇒ (S |wi ,B,A ∪ {(wi , l ,wj)})
Left-Arc(l): (S |wi |wj ,B,A) ⇒ (S |wj ,B,A ∪ {(wj , l ,wi)}) i 6= 0

Swap: (S |wi |wj ,B,A) ⇒ (S |wj ,wi |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:

1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees

I T is projective with respect to <p but not (necessarily) <

Advanced Dependency Parsing 33(36)

Advanced Transition-Based Parsing Techniques

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [w0,w1, . . . ,wn], { }) (w0 = ROOT)

Terminal: ([0], [],A)

Shift: (S ,wi |B,A) ⇒ (S |wi ,B,A)

Right-Arc(l): (S |wi |wj ,B,A) ⇒ (S |wi ,B,A ∪ {(wi , l ,wj)})
Left-Arc(l): (S |wi |wj ,B,A) ⇒ (S |wj ,B,A ∪ {(wj , l ,wi)}) i 6= 0

Swap: (S |wi |wj ,B,A) ⇒ (S |wj ,wi |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:

1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees

I T is projective with respect to <p but not (necessarily) <

Advanced Dependency Parsing 33(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[]S [ROOT, A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT]S [A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, A]S [hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, A, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, is]S [scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, is, scheduled]S [on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled]S [on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled, on]S [the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled, on, the]S [issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled, on, the, issue]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled, on, issue]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled, on]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

pobj

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, on]S [scheduled, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

pobj

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing]S [scheduled, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

prep

pobj

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, hearing, scheduled]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

prep

pobj

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, scheduled]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, scheduled, today]S [.]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, scheduled]S [.]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, scheduled, .]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT, scheduled]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ROOT]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

root

det aux

nsubj

prep

pobj

det

tmod

Advanced Dependency Parsing 34(36)

Advanced Transition-Based Parsing Techniques

Analysis

I Correctness:
I Sound and complete for the class of non-projective trees

I Complexity for greedy or beam search parsing:
I Quadratic running time in the worst case
I Linear running time in the average case

I Works well with beam search

Czech German
LAS UAS LAS UAS

Projective 80.8 86.3 86.2 88.5
Reordering 83.9 89.1 88.7 90.9

[Bohnet and Nivre 2012]

Advanced Dependency Parsing 35(36)

Conclusion

Conclusion

I Graph-based and transition-based parsing have complementary
strengths and weaknesses

I Many recent developments can be understood in this light:
I Graph-based: Increase feature scope (higher order models)

while keeping learning and inference tractable
I Transition-based: Improve learning and inference (beam

search, dynamic oracles) without sacrificing efficiency

I Convergence: global learning, rich features, heuristic search

I And then there is this thing called deep learning . . .

Advanced Dependency Parsing 36(36)

Conclusion

References and Further Reading

I Giuseppe Attardi. 2006. Experiments with a multilanguage non-projective
dependency parser. In Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 166–170.

I Bernd Bohnet and Joakim Nivre. 2012. A transition-based system for joint
part-of-speech tagging and labeled non-projective dependency parsing. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages
1455–1465.

I Xavier Carreras. 2007. Experiments with a higher-order projective dependency
parser. In Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 957–961.

I Michael A. Covington. 2001. A fundamental algorithm for dependency parsing. In
Proceedings of the 39th Annual ACM Southeast Conference, pages 95–102.

I Yoav Goldberg and Joakim Nivre. 2012. A dynamic oracle for arc-eager dependency
parsing. In Proceedings of COLING 2012, pages 959–976.

Advanced Dependency Parsing 36(36)

Conclusion

I Richard Johansson and Pierre Nugues. 2006. Investigating multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural
Language Learning (CoNLL), pages 206–210.

I Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1–11. Association for Computational Linguistics.

I Xuezhe Ma and Hai Zhao. 2012. Fourth-order dependency parsing. In Proceedings
of the Conference on Computational Linguistics (COLING), pages 785–796.

I Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven
dependency parsing models. In Proceedings of the Join Conference on Empirical
Methods in Natural Language Processing and the Conference on Computational
Natural Language Learning (EMNLP-CoNLL).

I Ryan McDonald and Fernando Pereira. 2006. Online learning of approximate
dependency parsing algorithms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), pages
81–88.

I Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 99–106.

Advanced Dependency Parsing 36(36)

Conclusion

I Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009. An improved oracle for
dependency parsing with online reordering. In Proceedings of the 11th International
Conference on Parsing Technologies (IWPT’09), pages 73–76.

I Joakim Nivre. 2007. Incremental non-projective dependency parsing. In
Proceedings of Human Language Technologies: The Annual Conference of the
North American Chapter of the Association for Computational Linguistics
(NAACL-HLT), pages 396–403.

I Joakim Nivre. 2009. Non-projective dependency parsing in expected linear time. In
Proceedings of the 47th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 351–359.

I Katerina Veselá, Havelka Jiri, and Eva Hajicová. 2004. Condition of projectivity in
the underlying dependency structures. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING), pages 289–295.

I Yue Zhang and Stephen Clark. 2008. A tale of two parsers: Investigating and
combining graph-based and transition-based dependency parsing. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 562–571.

Advanced Dependency Parsing 36(36)

Conclusion

I Yue Zhang and Joakim Nivre. 2012. Analyzing the effect of global learning and
beam-search on transition-based dependency parsing. In Proceedings of COLING
2012: Posters, pages 1391–1400.

Advanced Dependency Parsing 36(36)

	Introduction
	Graph-Based vs. Transition-Based Dependency Parsing
	Advanced Graph-Based Parsing Techniques
	Advanced Transition-Based Parsing Techniques
	Conclusion

