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Introduction

Plan for the Lecture

1. Graph-based vs. transition-based dependency parsing

2. Advanced graph-based parsing techniques
I Higher order models
I Non-projective parsing

3. Advanced transition-based parsing techniques
I Beam search
I Dynamic oracles
I Non-projective parsing
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Graph-Based vs. Transition-Based Dependency Parsing

Graph-Based Parsing

I Basic idea:
I Define a space of candidate dependency trees for a sentence
I Learning: Induce a model for scoring an entire dependency tree

for a sentence
I Parsing: Find the highest-scoring dependency tree, given the

induced model

I Characteristics:
I Global learning of a model for optimal dependency trees
I Exhaustive search during parsing (exact)
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Graph-Based vs. Transition-Based Dependency Parsing

Graph-Based Parsing Trade-Off

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I For example, first-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp
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Graph-Based vs. Transition-Based Dependency Parsing

Transition-Based Parsing

I Basic idea:
I Define a transition system (state machine) for mapping a

sentence to its dependency graph
I Learning: Induce a model for predicting the next state

transition, given the transition history
I Parsing: Construct the optimal transition sequence, given the

induced model

I Characteristics:
I Local learning of a model for optimal transitions
I Greedy best-first search (heuristic)
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Graph-Based vs. Transition-Based Dependency Parsing

Transition-Based Parsing Trade-Off

I Advantages:
I Highly efficient parsing – linear time complexity
I Rich history-based feature representations – no rigid

constraints from parsing algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning
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Graph-Based vs. Transition-Based Dependency Parsing

Error Analysis [McDonald and Nivre 2007]
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I MaltParser is more accurate than MSTParser for short
sentences (1–10 words) but its performance degrades more
with increasing sentence length
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Graph-Based vs. Transition-Based Dependency Parsing

Error Analysis [McDonald and Nivre 2007]
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I MaltParser is more precise than MSTParser for short
dependencies (1–3 words) but its performance degrades
drastically with increasing dependency length (> 10 words)

I MSTParser has more or less constant precision for
dependencies longer than 3 words

I Recall is very similar across systems
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Advanced Graph-Based Parsing Techniques

Plan for the Lecture

1. Graph-based vs. transition-based dependency parsing

2. Advanced graph-based parsing techniques
I Higher order models
I Non-projective parsing

3. Advanced transition-based parsing techniques
I Beam search
I Dynamic oracles
I Non-projective parsing

4. Neural networks in dependency parsing
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Advanced Graph-Based Parsing Techniques

Higher-Order Models

I Two main dimensions of higher-order models
I Vertical: e.g., “remain” is the grandparent of “emeritus”
I Horizontal: e.g., “remain” is first child of “will”
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Advanced Graph-Based Parsing Techniques

2nd-Order Horizontal Projective Parsing

I Score factors by pairs of horizontally adjacent arcs

I Often called sibling dependencies

I s(i , j , j ′) = score of adjacent arcs xi → xj and xi → xj ′

s(T ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

= . . . + s(i0, i1, i2) + s(i0, i2, i3) + . . . + s(i0, ij−1, ij) +

s(i0, ij+1, ij+2) + . . . + s(i0, im−1, im) + . . .
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Advanced Graph-Based Parsing Techniques

Higher-Order Projective Parsing

I People played this game since 2006
I McDonald and Pereira [2006] (2nd-order sibling)
I Carreras [2007] (2nd-order sibling and grandparent)
I Koo and Collins [2010] (3rd-order grand-sibling and tri-sibling)
I Ma and Zhao [2012] (4th-order grand-tri-sibling+)
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Advanced Graph-Based Parsing Techniques

Parsing Algorithms

I Eisner’s algorithm can be generalized to higher orders
I But there is a price to pay:

I Specialized chart items and combination rules
I Time complexity increases for every added order
I Anything beyond 2nd-order is too slow in practice

I Remember basic trade-off:
I Global training and exact inference – local feature scope
I Increasing feature scope makes exact inference harder

I This has led to research on approximate graph-based parsing
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Advanced Graph-Based Parsing Techniques

Non-Projective Parsing

I First-order model – equivalent to MST problem
I Chu-Liu-Edmonds’ algorithm:

I Construct a graph with the highest-scoring head for each word
I If this is a tree, it must be the MST
I If not, contract a cycle and recurse on smaller graph
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I This does not generalize to higher orders – no exact algorithm
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Advanced Transition-Based Parsing Techniques

Plan for the Lecture

1. Graph-based vs. transition-based dependency parsing

2. Advanced graph-based parsing techniques
I Higher order models
I Non-projective parsing

3. Advanced transition-based parsing techniques
I Beam search
I Dynamic oracles
I Non-projective parsing

4. Neural networks in dependency parsing
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Advanced Transition-Based Parsing Techniques

Greedy Search

I Take the single best action at any point (given by oracle o):

Parse(w1, . . . ,wn)
1 c ← ([ ]S , [0, 1, . . . , n]B , { })
2 while Bc 6= [ ]
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Maximally efficient – linear time complexity

I Sensitive to search errors and error propagation
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Advanced Transition-Based Parsing Techniques

Beam Search

I Maintain the k best hypotheses [Johansson and Nugues 2006]:

Parse(w1, . . . ,wn)
1 Beam ← {([ ]S , [0, 1, . . . , n]B , { })}
2 while ∃c ∈ Beam [Bc 6= [ ]]
3 foreach c ∈ Beam
4 foreach t
5 Add(t(c), NewBeam)
6 Beam ← Top(k, NewBeam)
7 return G = ({0, 1, . . . , n},ATop(1, Beam))

I Note:
I Pruning the beam requires that we score transition sequences
I Global learning to maximize score of entire sequence
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Advanced Transition-Based Parsing Techniques

Beam Size

[Zhang and Clark 2008]
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Advanced Transition-Based Parsing Techniques

The Best of Two Worlds?

I Like graph-based dependency parsing:
I Global learning – minimize loss over entire sentence
I Non-greedy search – accuracy increases with beam size

I Like (old school) transition-based parsing:
I Highly efficient – complexity still linear for fixed beam size
I Rich features – no constraints from parsing algorithm
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Advanced Transition-Based Parsing Techniques

Precision by Dependency Length

2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9 MST
Malt
ZPar

[Zhang and Nivre 2012]
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Advanced Transition-Based Parsing Techniques

Dynamic Oracles

I Beam search helps because it explores the search space
I At parsing time, the parser can recover from early bad decisions
I At training time, the parser can learn to avoid costly mistakes

I Can the parser benefit from exploration only at training time?
I Yes – but we need dynamic oracles for training
I Then we can improve greedy parsing for maximum speed
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Advanced Transition-Based Parsing Techniques

Online Learning with a Conventional Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([ ], [0, 1, . . . , nj ], { })
5 while Bc 6= [ ]
6 t∗ ← argmaxt w · f(c, t)
7 to ← o(c,Ti )
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← to(c)
11 return w

I Oracle o(c,Ti ) returns the optimal transition for c and Ti
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Advanced Transition-Based Parsing Techniques

Conventional Oracle for Arc-Eager Parsing

o(c,T ) =


Left-Arc if top(Sc) ← first(Bc) in T
Right-Arc if top(Sc) → first(Bc) in T
Reduce if ∃v < top(Sc) : v ↔ first(Bc) in T
Shift otherwise

I Correct:
I Derives T in a configuration sequence Co,T = c0, . . . , cm

I Problems:
I Deterministic: Ignores other derivations of T
I Incomplete: Valid only for configurations in Co,T
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Advanced Transition-Based Parsing Techniques

Oracle Parse

Transitions:

Stack Buffer Arcs
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques

Oracle Parse
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Advanced Transition-Based Parsing Techniques

Non-Determinisim
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques

Non-Optimality
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques
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Advanced Transition-Based Parsing Techniques

Dynamic Oracles

I Optimality:
I A transition is optimal if the best tree remains reachable
I Best tree = argminT ′ L(T ,T ′)

I Oracle:
I Boolean function o(c, t,T ) = true if t is optimal for c and T
I Non-deterministic: More than one transition can be optimal
I Complete: Correct for all configurations

I New problem:
I How do we know which trees are reachable?
I Easy for some transition systems (called arc-decomposable)
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Oracles for Arc-Decomposable Systems

o(c, t,T ) =

{
true if [R(c) − R(t(c))] ∩ T = ∅
false otherwise

where R(c) ≡ {a | a is an arc reachable in c }

Arc-Eager

o(c, LA,T ) =

{
false if ∃w ∈ Bc : s ↔ w ∈ T (except s ← b)
true otherwise

o(c,RA,T ) =

{
false if ∃w ∈ Sc : w ↔ b ∈ T (except s → b)
true otherwise

o(c,RE,T ) =

{
false if ∃w ∈ Bc : s → w ∈ T
true otherwise

o(c, SH,T ) =

{
false if ∃w ∈ Sc : w ↔ b ∈ T
true otherwise

Notation: s = node on top of the stack S

b = first node in the buffer B
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Online Learning with a Dynamic Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([ ]S , [w1, . . . ,wnj ]B , { })
5 while Bc 6= [ ]
6 t∗ ← argmaxt w · f(c, t)
7 to ← argmaxt∈{t|o(c,t,Ti )}w · f(c, t)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← choice(to(c), t∗(c))
11 return w

I Ambiguity: use model score to break ties
I Exploration: follow model prediction even if not optimal
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[Goldberg and Nivre 2012]
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Non-Projective Parsing

I Standard transition systems only derive projective trees
I Approaches to non-projective transition-based parsing:

I Pseudo-projective parsing [Nivre and Nilsson 2005]
I Non-adjacent arc transitions

[Covington 2001, Attardi 2006, Nivre 2007]
I Online reordering [Nivre 2009, Nivre et al. 2009]
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Advanced Transition-Based Parsing Techniques

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p
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Advanced Transition-Based Parsing Techniques

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([ ], [w0,w1, . . . ,wn], { }) (w0 = ROOT)

Terminal: ([0], [ ],A)

Shift: (S ,wi |B,A) ⇒ (S |wi ,B,A)

Right-Arc(l): (S |wi |wj ,B,A) ⇒ (S |wi ,B,A ∪ {(wi , l ,wj)})
Left-Arc(l): (S |wi |wj ,B,A) ⇒ (S |wj ,B,A ∪ {(wj , l ,wi )}) i 6= 0

Swap: (S |wi |wj ,B,A) ⇒ (S |wj ,wi |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:

1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees

I T is projective with respect to <p but not (necessarily) <
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Advanced Transition-Based Parsing Techniques

Example Transition Sequence

[ ]S [ROOT, A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .
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Advanced Transition-Based Parsing Techniques

Analysis

I Correctness:
I Sound and complete for the class of non-projective trees

I Complexity for greedy or beam search parsing:
I Quadratic running time in the worst case
I Linear running time in the average case

I Works well with beam search

Czech German
LAS UAS LAS UAS

Projective 80.8 86.3 86.2 88.5
Reordering 83.9 89.1 88.7 90.9

[Bohnet and Nivre 2012]
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Conclusion

Conclusion

I Graph-based and transition-based parsing have complementary
strengths and weaknesses

I Many recent developments can be understood in this light:
I Graph-based: Increase feature scope (higher order models)

while keeping learning and inference tractable
I Transition-based: Improve learning and inference (beam

search, dynamic oracles) without sacrificing efficiency

I Convergence: global learning, rich features, heuristic search

I And then there is this thing called deep learning . . .
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