

Introduction

Syntactic parsing (5LN713/5LN717) 2018-01-16 Sara Stymne

Department of Linguistics and Philology

Partly based on slides from Marco Kuhlmann

Today

- Introduction to syntactic analysis
- Course information
- Exercises

What is syntax?

- Syntax addresses the question how sentences are constructed in particular languages.
- The English (and Swedish) word syntax comes from the Ancient Greek word sýntaxis 'arrangement'.

What is syntax not?

Syntax does not answer questions about ...

- ... how speech is articulated and perceived (phonetics, phonology)
- ... how words are formed (morphology)
- ... how utterances are interpreted in context (semantics, pragmatics)

What is syntax not?

Syntax does not answer questions about ...

- ... how speech is articulated and perceived (phonetics, phonology)
- ... how words are formed (morphology)
- ... how utterances are interpreted in context (semantics, pragmatics)

Why should you care about syntax?

- Syntax describes the distinction between well-formed and ill-formed sentences.
- Syntactic structure can serve as the basis for semantic interpretation and can be used for
 - Machine translation
 - Information extraction and retrieval
 - Question answering

Parsing

The automatic analysis of a sentence with respect to its syntactic structure.

Theoretical frameworks

- Generative syntax
 Noam Chomsky (1928–)
- Categorial syntax
 Kazimierz Ajdukiewicz (1890–1963)
- Dependency syntax
 Lucien Tesnière (1893–1954)

Theoretical frameworks

Generative syntax
 Noam Chomsky (1928–)

- Categorial syntax
 Kazimierz Ajdukiewicz (1890–1963)
- Dependency syntax
 Lucien Tesnière (1893–1954)

Theoretical frameworks

Chomsky

Ajdukiewicz

Tesnière

Phrase structure trees

UPPSALA UNIVERSITET

Phrase structure vs dependency trees

Ambiguity

I booked a flight from LA.

- This sentence is ambiguous. In what way?
- What should happen if we parse the sentence?

Ambiguity

Ambiguity

Interesting questions

- Is there any parse tree at all?
 - Recognition
- What is the best parse tree?
 - Parsing

Parsing as search

• Parsing as search:

Search through all possible parse trees for a given sentence.

• In order to search through all parse trees we have to 'build' them.

top-down

only build trees that are rooted at S may produce trees that do not match the input bottom-up

only build trees that match the input

may produce trees that are not rooted at S

How many trees are there?

• Divide and conquer:

In order to solve a problem, split it into subproblems, solve each subproblem, and combine the solutions.

- Dynamic programming (DP) (bottom up): Solve each subproblem only once and save the solution in order to use it as a partial solution in a larger subproblem.
- Memoisation (top down): Solve only the necessary subproblems and store their solutions for resue in solving other subproblems.

Complexity

- Using DP we can (sometimes) search through all parsetrees in polynomial time.
- That is much better than to spend exponential time!
- But it may still be too expensive!
 In these cases one can use an approximative method such as greedy search or beam search.

Course information

Intended learning outcomes 5LN713/5LN717

At the end of the course, you should be able to

- explain the standard models and algorithms used in phrase structure and dependency parsing;
- implement and evaluate some of these techniques;
- critically evaluate scientific publications in the field of syntactic parsing,
- design, evaluate, or theoretically analyse the syntactic component of an NLP system (5LN713)

- Examination is continuous and distributed over three graded assignments, two literature seminars, and a project (for 7,5 credits)
- Two assignments are small projects where you implement (parts of) parsers.
- Literature review assignment
- Two literature seminars

Practical assignments

- Assignment I:PCFG
 - Implement conversion of treebank to CNF
 - Implement CKY algorithm
- Assignment 3: Dependency parsing
 - Implement an oracle for transition-based dependency parsing
- For both assignments: for VG an extra task is required.

Literature review

- Pick two research articles about parsing
- Can be from journals, conferences or workshops
- The main topic of the articles should be parsing, and it should be concerned with algorithms
- Write a 3-page report: summarize, analyse and critically discuss

Literature seminars

- Read one given article for each seminar
- Prepare according to the instructions on the homepage
- Everyone is expected to be able to discuss the article and the questions about it
 - It should be clear that you have read and analysed the article, but it is perfectly fine if you have misunderstood some parts
- The seminars are obligatory
 - If you miss a seminar or are unprepared, you will have to hand in a written report.

Project

- Can be done individually or in pairs:
 - To be self-organized by you!
- Suggestions for topics/themes on web page
- Project activities:
 - Proposal
 - Then you will be assigned a supervisor
 - Report
 - Oral discussion (only for pairs):

Learning outcomes and examination

- explain the standard models and algorithms used in phrase structure and dependency parsing; all assignments and seminars
- implement and evaluate some of these techniques;
 assignment I and 3
- critically evaluate scientific publications in the field of syntactic parsing, assignment 2, seminars
- design, evaluate, or theoretically analyse the syntactic component of an NLP system (5LN713) project

Grading 5LN713/5LN717

- The assignments are graded with G and VG
- G on the seminars if present, prepared and active. The seminars are obligatory!
- To achieve G on the course:
 - G on all assignments and seminars
- To achieve VG on the course:
 - Same as for G and VG on at least two assignments/project

Teachers

- Sara Stymne
 - Examiner, course coordinator, lectures, assignments, seminar, project supervision
- Joakim Nivre
 - Seminar, lecture, project supervision

Teaching

- 10 lectures
- 2 seminars
- No scheduled supervision / lab hours
- Supervision available on demand:
 - Email
 - Knock on office door
 - Book a meeting

Lectures

- Lectures and course books cover basic parsing algorithms in detail
- They touch on more advanced material, but you will need to read up on that independently
- Lectures will usually include small practical tasks
- Do not expect the slides to be self contained! You will not be able to pass the course only by looking at the slides.

Course workload 5LN713/5LN717

- 7.5 hp means about 200 hours work:
- 5 hp means about 133 hours work:
- 20 h lectures
- 2 h seminars
- 178/111 h work on your own
 - ~ 101 h assignment work (including reading)
 - ~ 10 h seminar preparation
 - ~ 67 h project work (5LN713)

Deadlines

Assignment	Deadline
1: PCFG	Feb 16
2: Lit review	Mar 7
3: Dep	Mar 23
Project proposal	Feb 26
Project report	Mar 23
Backup	Apr 20

Seminar	Everyone
1	Feb 14
2	Mar 20

Reading: course books

- Daniel Jurafsky and James H. Martin.
 Speech and Language Processing. 2nd edition.
 Pearson Education, 2009.
 Chapters 12-14.
- Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing. Morgan and Claypool, 2009. Chapter 1-4, 6.

Reading: articles

- Seminar I
 - Mark Johnson. PCFG Models of Linguistic Tree Representations. Computational Linguistics 24(4). Pages 613-632.
- Seminar 2
 - Joakim Nivre and Jens Nilsson. Pseudo-Projective Dependency Parsing. Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05). Pages 99-106. Ann Arbor, USA.

Evaluation from previous years

- Overall score: 3.9 2016 (3.7 in 2015; 4.75 in 2014)
- Good:
 - Good with practical exercises during the lectures
 - The seminar articles were a good fit with the practical assignments
 - Good mix of tasks for the examination
 - The practical assignments not easy, but led to insights, and felt valuable with respect to future jobs
- Bad:
 - The first practical assignment was difficult, and could maybe have been better explained
 - Now updated!
 - Maybe it would be better with separate deadlines for theoretical and practical assignments
 - Deadlines changed
 - The instructions for the assignments could have been more thorough.
 - Assignments are updated!
- Not much change, since the course has been working well for some years. New advanced lectures intended for master students.

Work to do this week

- Read J&M 12.1-12.7 (today's lecture)
- Read J&M 13.1-13.3 (tomorrow's lecture)
- Read descriptions of assignments
- If you need, repeat:
 - parts of grammar course: phrase structure grammars and dependency grammars
 - programming course: practice some python, learn about complexity