

Language Technology: Research and Development

Language Technology Research and Development

Sara Stymne

Uppsala University Department of Linguistics and Philology sara.stymne@lingfil.uu.se

Class Representatives

- Master program meeting November 2, 14-16
 - For students and staff
- Each class should have three representatives
- ▶ Elect them somehow, and let Mats know who they are!

The Name of the Game

Computational Linguistics (CL)

Natural Language Processing (NLP)

[Human] Language Technology ([H]LT)

[Natural] Language Engineering ([N]LE)

The Name of the Game

Computational Linguistics (CL)

- Study of natural language from a computational perspective Natural Language Processing (NLP)
 - Study of computational models for processing natural language

[Human] Language Technology ([H]LT)

- ► Development and evaluation of applications based on CL/NLP [Natural] Language Engineering ([N]LE)
 - Same as [H]LT but obsolete?

The Name of the Game

Computational Linguistics (CL)

► Study of natural language from a computational perspective Natural Language Processing (NLD)

Study of Often used synonymously! ing natural language

[Human] Language Technology ([H]LT)

► Development and evaluation of applications based on CL/NLP [Natural] Language Engineering ([N]LE)

Same as [H]LT but obsolete?

An Interdisciplinary Field

Linguistics

► Theory, language description, data analysis (annotation) Computer science

► Theory, data models, algorithms, software technology Mathematics

► Theory, abstract models, analytic and numerical methods Statistics

► Theory, statistical learning and inference, data analysis

Linguistics

(1887 - 1949)

F. de Saussure (1857–1913)

N. Chomsky (1928–)

- Structuralist linguistics (1915–1960)
 - Language as a network of relations (phonology, morphology)
 - Inductive discovery procedures
- Generative grammar (1960–)
 - Language as a generative system (syntax)
 - Deductive formal systems (formal language theory)
 - NLP systems based on linguistic theories

Linguistics

- ▶ Recent trends (1990–):
 - Language processing (psycholinguistics, neurolinguistics)
 - Strong empiricist movement (corpus linguistics)
 - NLP systems based on linguistically annotated data
- Theoretical and computational linguistics have diverged Interaction between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous? (Workshop at EACL 2009)

Computer Science

Alan Turing (1912–1954)

Herbert Simon and John Newell (1916–2001) (1927–1992)

- Theoretical computer science
 - Turing machines and computability (Church-Turing thesis)
 - Algorithm and complexity theory (cf. formal language theory)
- Artificial Intelligence
 - Early work on symbolic logic-based systems (GOFAI)
 - Trend towards machine learning and sub-symbolic systems
 - Parallel development in natural language processing

Mathematics

- Mathematical model
 - Description of real-world system using mathematical concepts
 - Formed by abstraction over real-world system
 - Provide computable solutions to problems
 - Solutions interpreted and evaluated in the real world
- Mathematical modeling fundamental to (many) science(s)

Mathematics

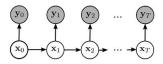
- ► Real-world language technology problem:
 - ► Syntactic parsing: sentence ⇒ syntactic structure
 - No precise definition of relation from inputs to outputs
 - At best annotated data samples (treebanks)
- Mathematical model:
 - Probabilistic context-free grammar G

$$T^* = \underset{T: yield(S) = T}{\operatorname{argmax}} P_G(T)$$

- T^* can be computed exactly in the model
- ► *T*^{*} may or may not give a solution to the real problem
- How do we determine whether a model is good or bad?

Statistics

Probability theory


Mathematical theory of uncertainty

Descriptive statistics

- Methods for summarizing information in large data sets
 Statistical inference
 - Methods for generalizing from samples to populations

Statistics

- Probability theory
 - Framework for mathematical modeling
 - Standard models: HMM, PCFG, Naive Bayes
- Descriptive statistics
 - Summary statistics in exploratory empirical studies
 - Evaluation metrics in experiments (accuracy, precision, recall)
- Statistical inference
 - Estimation of model parameters (machine learning)
 - Hypothesis testing about systems (evaluation)

Language Technology R&D

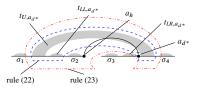
Sections in Transaction of the ACL (TACL):

- Theoretical research
- Empirical research
- Applications and tools
- Resources and evaluation

Language Technology R&D

Sections in Transaction of the ACL (TACL):

- Theoretical research deductive approach
- Empirical research inductive approach
- Applications and tools design and construction
- Resources and evaluation data and method



Theoretical Research

- Formal theories of language and computation
- Studies of models and algorithms in themselves
- Claims justified by formal argument (deductive proofs)
- Often implicit relation to real-world problems and data

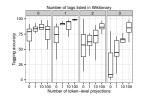
Theoretical Research

Satta, G. and Kuhlmann, M. (2013)

Efficient Parsing for Head-Split Dependency Trees.

Transactions of the Association for Computational Linguistics 1, 267–278.

- Contribution:
 - Parsing algorithms for non-projective deendency trees
 - Added constraints reduce complexity from $O(n^7)$ to $O(n^5)$
- Approach:
 - Formal description of algorithms
 - Proofs of correctness and complexity
 - No implementation or experiments
 - Empirical analysis of coverage after adding constraints



Empirical Research

- Empirical studies of language and computation
- Studies of models and algorithms applied to data
- Claims justified by experiments and statistical inference
- Explicit relation to real-world problems and data

Empirical Research

Täckström, O., Das, D., Petrov, S., McDonald, R. and Nivre, J. (2013) Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging. *Transactions of the Association for Computational Linguistics* 1, 1–12.

- Contribution:
 - Latent variable CRFs for unsupervised part-of-speech tagging
 - Learning from both type and token constraints
- Approach:
 - Formal description of mathematical model
 - Statistical inference for learning and evaluation
 - Multilingual data sets used in experiments

Applications and Tools

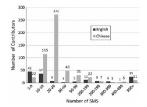
- Design and construction of LT systems
- Primarily end-to-end applications (user-oriented)
- Claims often justified by proven experience
- May include experimental evaluation or user study

Applications and Tools

Gotti, F., Langlais, P. and Lapalme, G. (2014)

Designing a Machine Translation System for Canadian Weather Warnings: A Case Study. *Natural Language Engineering* 20(3): 399–433.

- Contribution:
 - In-depth description of design and application development
 - Extensive evaluation in the context of application (real users)
- Approach:
 - Case study concrete instance in context
 - Semi-formal system description (flowcharts, examples)
 - Statistical inference for evaluation


Resources and Evaluation

Resources

- Collection and annotation of data (for learning and evaluation)
- Design and construction of knowledge bases (grammars, lexica)
- Evaluation
 - Protocols for (empirical) evaluation
 - Intrinsic evaluation task performance
 - Extrinsic evaluation effect on end-to-end application
 - Methodological considerations:
 - Selection of test data (sampling)
 - Evaluation metrics (intrinsic, extrinsic)
 - Significance testing (statistical inference)

Resources and Evaluation

Chen, T. and Kan, M.-Y. (2013)

Creating a Live, Public Short Message Service Corpus:

The NUS SMS Corpus. Language Resources and Evaluation 47:299–335.

- Contribution:
 - ▶ Free SMS corpus in English and Chinese (> 70,000 msgs)
 - Discussion of methodological considerations
- Approach:
 - Crowdsourcing using mobile phone apps
 - Automatic anonymization using regular expressions
 - Linguistic annotation as future plans

Language Technology as a Science

Scientific reasoning

- Deduction common in theoretical research
- Induction underlies machine learning and statistical evaluation
- Inference to the best explanation in experimental studies
- Scientific explanation
 - Explanations based on general laws are rare
 - Explanations based on statistical generalizations are the norm
- Reproducibility/replicability
 - Important in theory but problematic in practice
 - Recent initiatives to publish data and software with papers Fokkens et al. (2013) Offspring from Reproduction Problems: What Replication Failure Teaches Us. In *Proceedings of ACL*, 1691–1701.

Ethics for NLP

- Receiving increasingly more attention!
- Some issues: (Hovy and Spruit, 2016)
 - Exclusion
 - Overgeneralization
 - Topic exposure problems
 - Dual-use problems
- 1st workshop on Ethics in NLP, 2017 (http://www.ethicsinnlp.org/)

Science or Engineering?

- Is NLP/CL science or engineering?
- Characteristics of science: (Overton opinion)
 - 1. It is guided by natural law
 - 2. It has to be explanatory by reference to nature law
 - 3. It is testable against the empirical world
 - 4. Its conclusions are tentative, i.e. are not necessarily the final word
 - 5. It is falsifiable

Coming up

- Take home exam
 - Handed out: September 22
 - Deadline: September 29
 - Studentportalen used for handing out and submitting
- Literature seminars: now (nearly) finalized
 - ▶ 2-3 articles to read for next Wednesday/Thursday
 - Check the schedule for updates!
 - Everyone is expected to contribute to discussions!

Reminder deadlines etc.

- All course deadlines are strict!
- ► Hand in to studentportalen at the latest 23.59. Then it closes.
- Extra deadline 1 month after original deadline (not recommended!)

Reminder deadlines etc.

- All course deadlines are strict!
- ▶ Hand in to studentportalen at the latest 23.59. Then it closes.
- Extra deadline 1 month after original deadline (not recommended!)
- If you cannot respect a deadline due to extraordinary circumstances, discuss this with your teacher well before the deadline. No exceptions will be given after the deadline!

Reminder deadlines etc.

- All course deadlines are strict!
- ▶ Hand in to studentportalen at the latest 23.59. Then it closes.
- Extra deadline 1 month after original deadline (not recommended!)
- If you cannot respect a deadline due to extraordinary circumstances, discuss this with your teacher well before the deadline. No exceptions will be given after the deadline!
- Take home exam:
 - Individual examination
 - No cooperation