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Why this lecture?

For about 15 years, the MT world was relatively static.

State of the art defined by phrase-based SMT and
syntax-based SMT.

Well-known strengths and weaknesses.

Neural MT is a new, quite different approach to MT
that seems to outperform the previous methods.

Deep Learning Continuous-space NLP
Neural Networks

Deep Learning

Machine learning paradigm that gained popularity
very recently.

First breakthroughs in computer vision.

Multiple layers of prediction:
“Automated feature engineering”



Deep Learning

Image source: http://deeplearning.stanford.edu/wiki/index.php/Exercise%3AVectorization

Continuous-Space Methods

NLP traditionally treated words as discrete,
incomparable units.

Continuous-space methods map them into a vector space
where you can compute similarities.

Methods: Word cooccurrence or deep learning.

With deep learning, we can train word embeddings
for specific objectives.
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Word Embeddings (Projected)
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Neural networks

Neural networks are the machine learning paradigm
in which most of this happens.

Biologically inspired, but doesn’t matter very much.

Very popular in the early 1980’s, but the time wasn’t ripe.

The elementary “neuron” is just a nonlinear
with some trainable parameters.

Neurons are combined into a network
by function composition.

Logistic Regression
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Logistic Regression
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Multiple Decision Steps
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Training the Network

Neural networks are trained by numerically minimising
the error of the output for a training set.

The algorithms used are variants of gradient descent.

The gradients with respect to all weights can be
computed efficiently with a dynamic programming algorithm
called back-propagation.

Word Embeddings in Neural Networks
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Sequence Length Limits

A given network takes a fixed number of inputs.

In MT, we need to process input sentences of arbitrary length
and produce output of arbitrary length.

Input and output length are not necessarily the same.

Input length Output length Compression Network type

fixed fixed feed-forward
variable = input (or fixed) recurrent
variable unconstrained to fixed size encoder-decoder
variable unconstrained no compression attention-based



Adding a Time Dimension: Recurrent Nets
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Processing Sequences
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Unequal Sequence Length

In this architecture, there are equally many inputs xi
as outputs yi .

Useful for sequence labelling tasks such as POS tagging.

In machine translation, the length of
the input and output sequences differ.



Encoder-Decoder Architecture
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must hold the contents
of the whole input sentence.

Attention Mechanism
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Neural MT: Summary

Very new area: First large-scale systems in 2014.

Promising results in public evaluations.

We know little about its strengths and weaknesses yet,
but they seem to be very different from earlier approaches.

I’ll tell you more in a few years. . .


