

Machine Translation Tuning and factored translation

Sara Stymne Uppsala University

Slides mainly from Philipp Koehn and Jörg Tiedemann

Tuning

Log-linear model

Weights in log-linear models, which is a weighted combination of many components

$$f(s,t) = \sum_{i} \lambda_{i} h_{i}(s,t)$$

h_i(s,t) are feature functions such as

- translation model
- language model
- distortion model

λ_i are weights

 weights are used to tune the importance of each feature function

Feature weights

Contribution of feature h_k determined by weight λ_k Methods for setting the feature weights:

- manually try a few, take best
- automatically tune with an optimization algorithm

How to learn weights

- set aside a development corpus
- set the weights, so that optimal translation performance on this development corpus is achieved
- requires automatic scoring method

Weight optimization

- Setting the feature weights is an optimization problem: $\Lambda_{\text{best}} = \operatorname{argmax}_{\Lambda}G(E,T_{\Lambda}(F))$
- Find weight vector $\Lambda_{best} = (\lambda'_1 \cdot \cdot \cdot \lambda'_m)$ that maximizes some gain function G
- The gain function G compares a set of reference sentences E to a set of translated sentences T_A(F)
- Which gain function? Our evaluation metric (Bleu)!

Discriminative vs Generative Models

Generative models

- translation process is broken down into steps
- each step is modeled by a probability distribution
- each probability distribution is estimated from the data by maximum likelihood

Discriminative models

- model consists of a number of features
- each feature has a weight, measuring its value for judging a translation as correct
- supervised learning: directly tune model parameters (feature weights)

towards optimal performance wrt. the evaluation metric on development data

Employ development corpus

- different from training corpus for phrase extraction
- small (maybe 2000 sentences)
- different from the held-out test set which is used to finally evaluate the translation quality

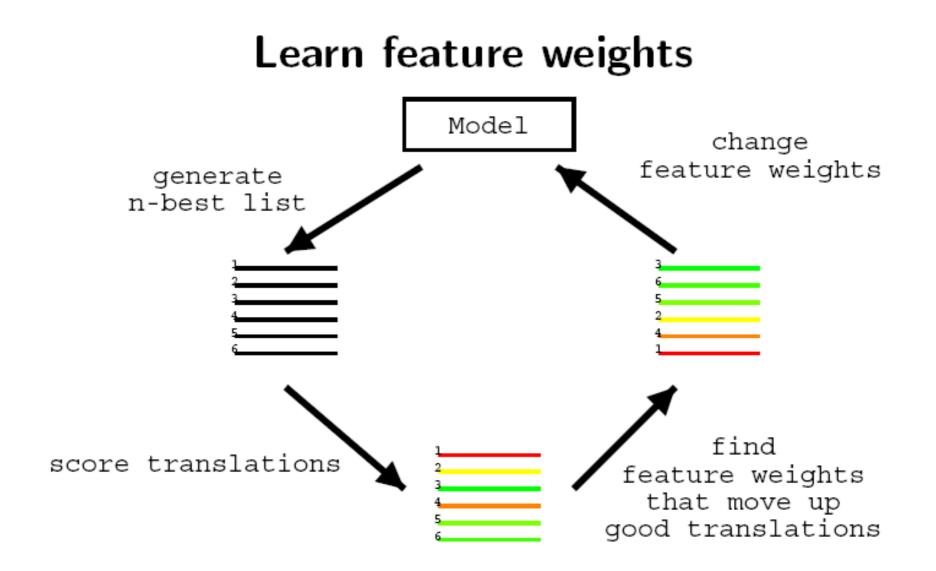
Translate development corpus using model with current feature weights,

output N -best list of translations (N = 100, 1000, \ldots)

Evaluate translations with the gain function

Adjust feature weights to increase the gain

Iterate translation, evaluation, and adjustment of feature weights for a number of times



Optimizations on N-best lists (I)

- Task: find weights so that the model ranks best translations first
- Input: er geht ja nicht nach Hause, Ref: he does not go home

Translation	Feature 1	Feature 2	Model score	Gain
he is not go home	-0.5	-3	-0.7	0.3
it is not under house	-2	-2	-0.8	0.2
he does not go home	-4	-1.5	-1.1	1.0
it is not packing	-3	-3	-1.2	0.0
he is not for home	-5	-6	-2.2	0.2

 $\lambda_1 = 0.2, \ \lambda_2 = 0.2$

Try to find values of weights so that the best hypothesis, in bold, is moved up according to model score

Optimizations on N-best lists (2)

- Task: find weights so that the model ranks best translations first
- Input: er geht ja nicht nach Hause, Ref: he does not go home

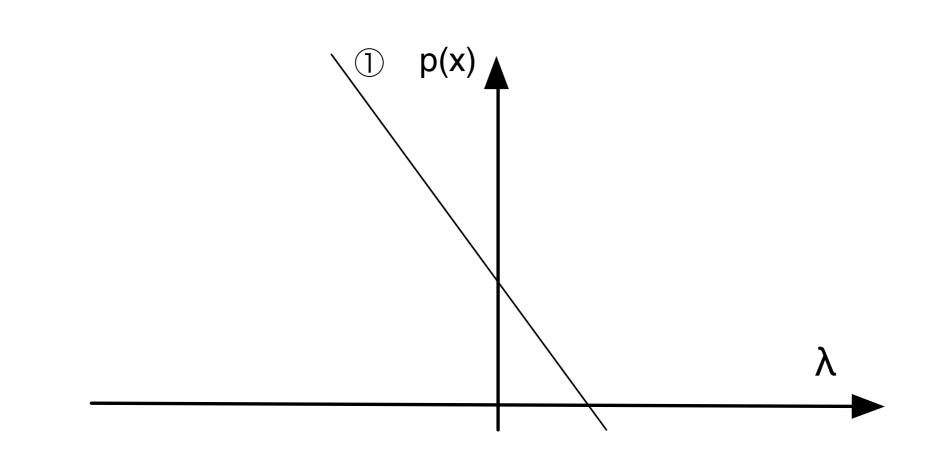
Translation	Feature 1	Feature 2	Model score	Gain
he is not go home	-0.5	-3	-925	0.3
it is not under house	-2	-2	-0.7	0.2
he does not go home	-4	-1.5	-0.65	1.0
it is not packing	-3	-3	-1.05	0.0
he is not for home	-5	-6	-2.05	0.2

 $\lambda_1 = 0.05, \lambda_2 = 0.3$

Minimum Error rate training

Line search for best feature weights

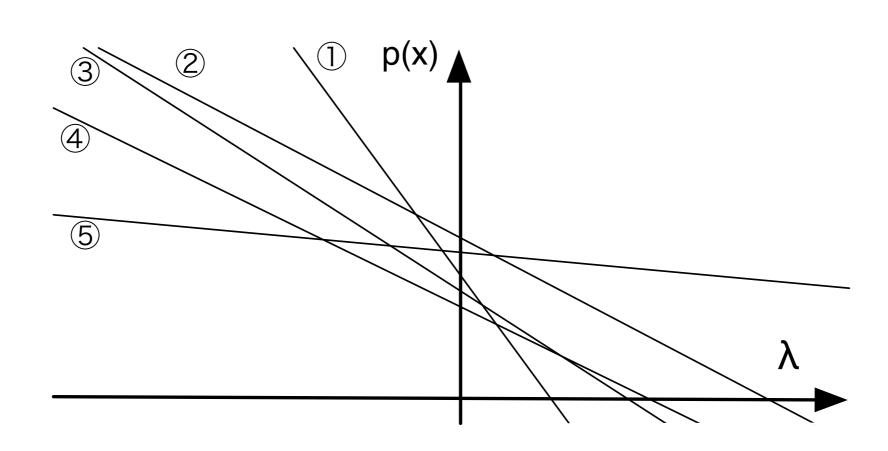
given: sentences with n-best lists of translations
iterate n times
 randomize starting feature weights
 for each feature
 find best feature weight
 update if different from current
return best feature weights found in any iteration



• Probability of one translation $p(\mathbf{e}_i | \mathbf{f})$ is a function of λ

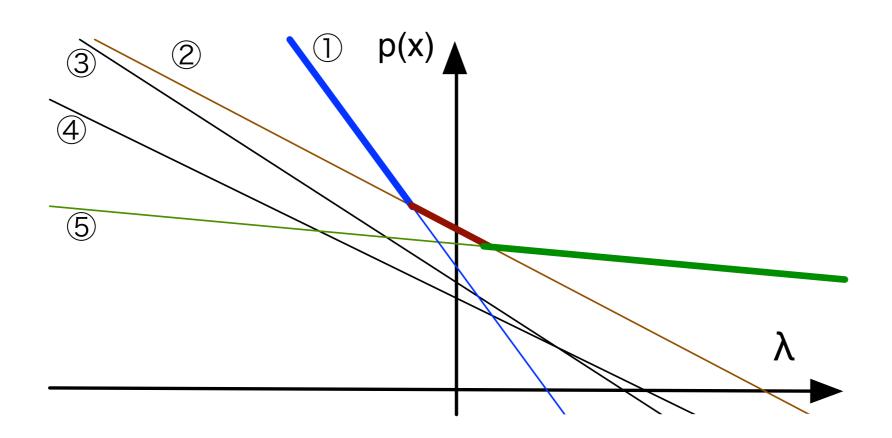
 $p(\mathbf{e}_i|\mathbf{f}) = \lambda a_i + b_i$

N-best translation for one sentence



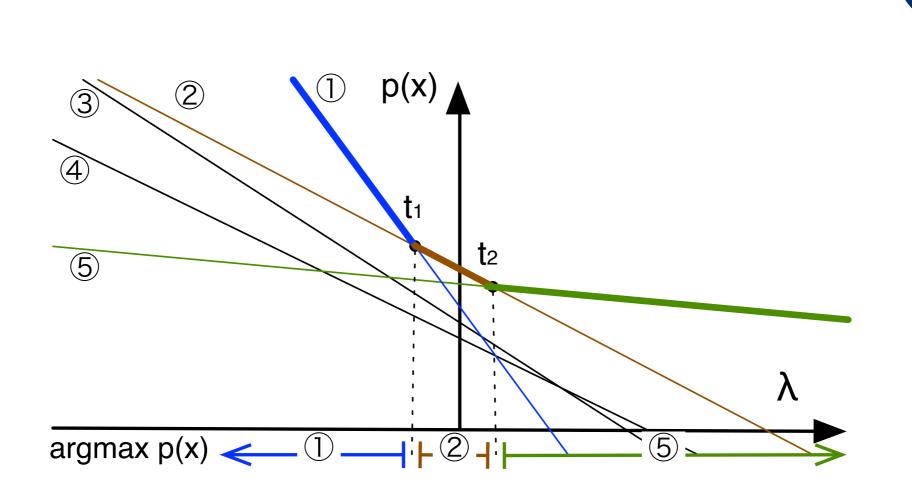
• Each translation is a different line

Upper envelope



• Highest probability translation depends on λ

Threshold points



• There are one a few threshold points t_j where the model-best line changes

Finding the optimum value for λ

Real-valued λ can have infinite number of values But only on threshold points, one of the model-best translation changes

- \Rightarrow Algorithm:
 - find the threshold points
 - for each interval between threshold points
 - * find best translations
 - * compute error-score
 - pick interval with best error-score

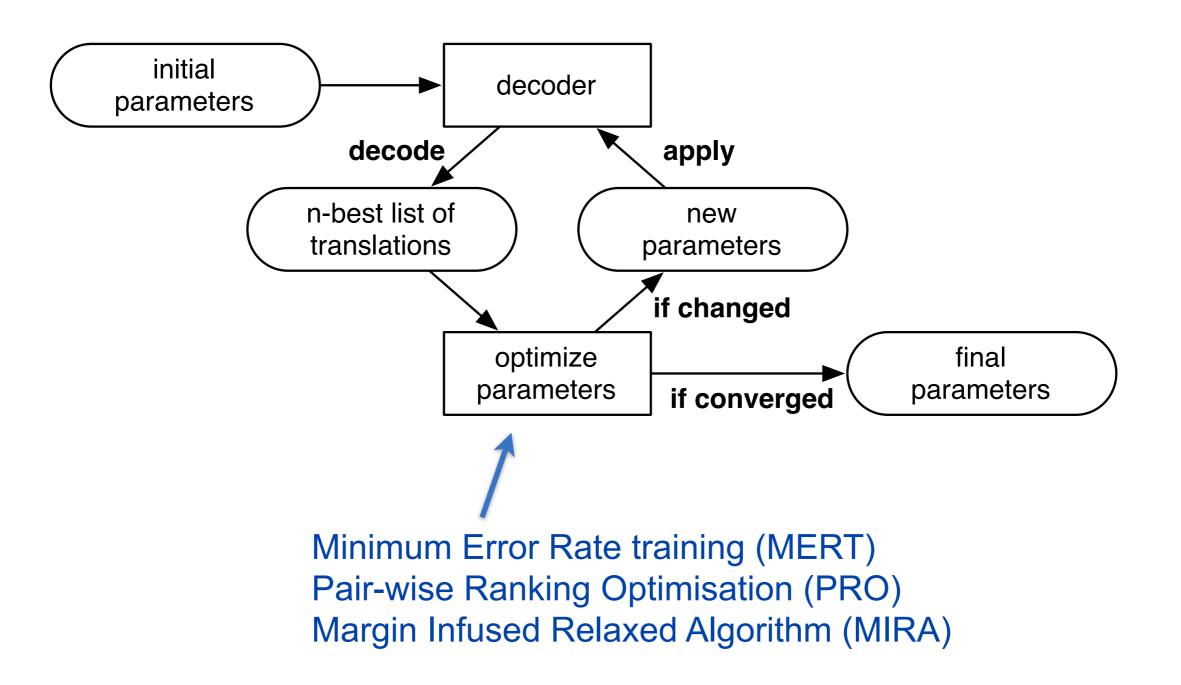
Experimental setup (I)

- Training data for translation model: 10s to 100s of millions of words
- Training data for language model: billions of words
- Parameter tuning
 - set a few weights (say, 10–15)
 - tuning set of 1000s of sentence pairs sufficient
- Finally, test set needed

Experimental setup (2)

- Tuning is non-deterministic and gives different results if you run it several times
- It is good practice to run multiple tuning runs and give the average score
- The method I just outlined is called minimum error rate training (MERT)
 - Works well for a small set of features (20-30)
 - Like the systems we have discussed in the course
 - Default method in Moses
- For larger feature sets we need other methods

Alternative optimization methods



Factored translation

Problems with PBSMT

No use of morphology:

- treat inflectional variants ("look", "looks", "looked") as completely different words!
- in learning translation models: knowing how to translate "look" doesn't help to translate "looks"

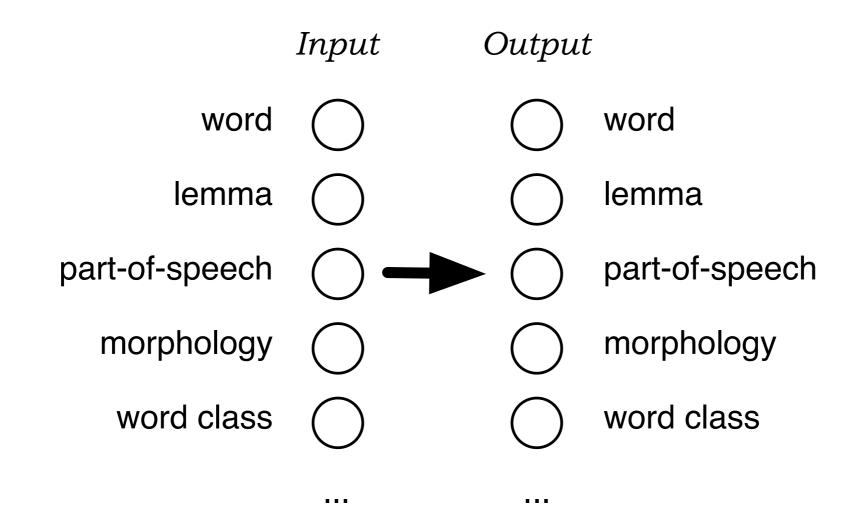
Works fine for English (and reasonable amounts of data)

Problems:

- morphologically rich languages
- sparse data sets
- flexible word order

Factored models (I)

Represent words by factors



Factored models (2)

Morphology

- is productive
- well understood
- generalizable patterns

Factored models

- learn translations of base forms
- learn to map morphology
- learn to generate target surface form

Factored models (3)

Represent words by factors? Why?

- combine scores for translating various factors
- back-off to other factors (lemma)
- use various factors for reordering
- better word alignment (?)

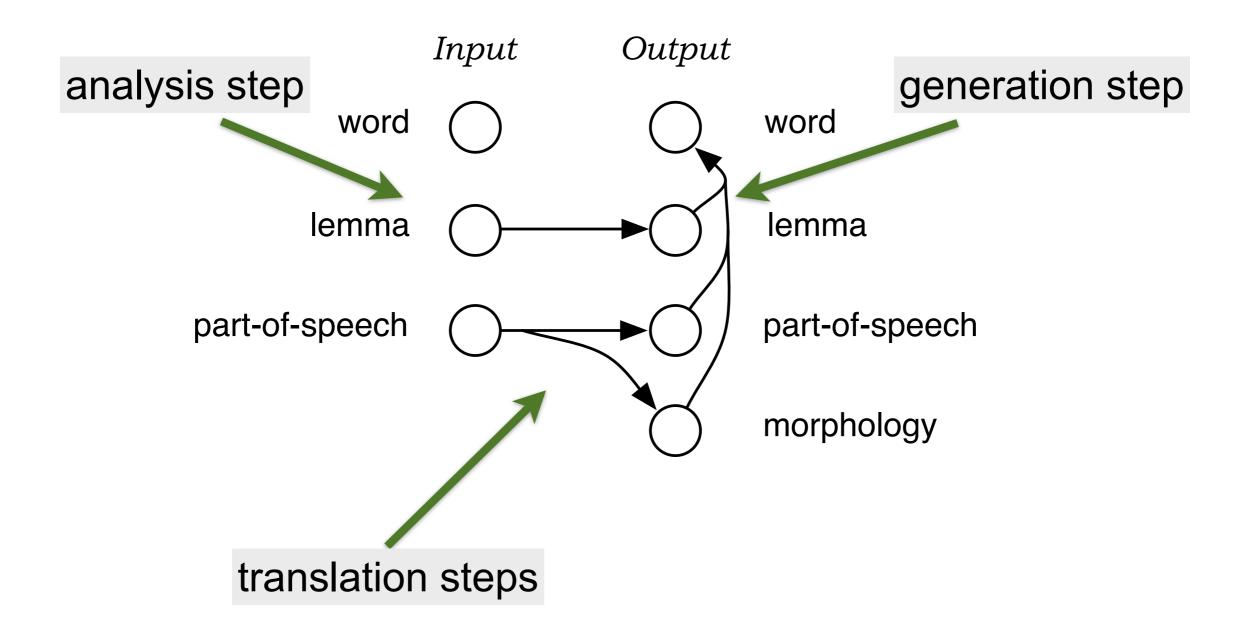
Better generalization

- can translate words that we haven't seen in training
- better statistics for translation options

Richer model (more (linguistic) information)

• PoS, syntactic function, semantic role, ...

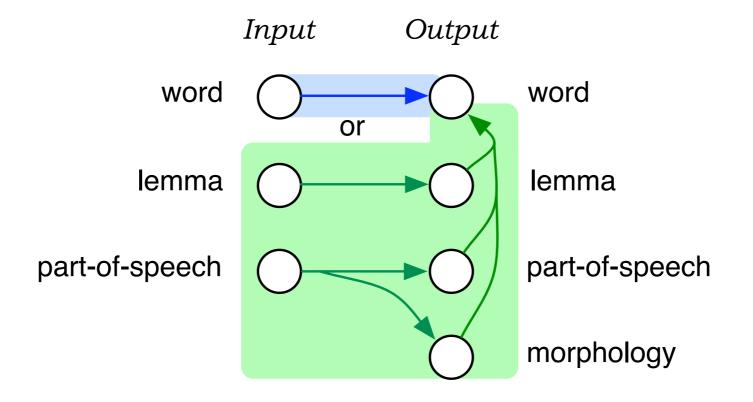
Factored model example (I)



Factored model example (2)

Use benefits of general phrase-based SMT!

• factored models as alternative paths (or backoff)



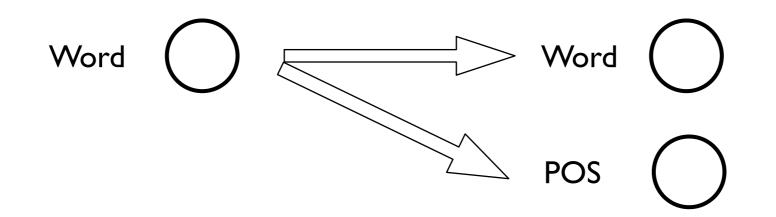
Do not always lead to improvement

System	In-domain	Out-of-domain	
Baseline	18.19	15.01	
With POS LM	19.05	15.03	
Morphgen model	14.38	11.65	
Both model paths	19.47	15.23	

Complicated models are slow compared to standard PBSMT

Factored model example (3)

Simpler models often more useful!



Useful with POS LM

Simple factored models

Often useful with POS/morphology LMs Not much slower than standard models Tend to give some improvements to agreement

Improve word order of compounds that have been split Number of compound modifiers without a head: System without POS-model: 136 System with a POS-model: 6

Factored model in Moses

Full support in Moses:

<u>http://www.statmt.org/moses/?n=Moses.FactoredTutorial</u>

Data Format (example):

=> factored-corpus/proj-syndicate.de <==
korruption|korruption|nn|nn.fem.cas.sg floriert|florieren|vvfin|vvfin .|.|per|per</pre>

=> factored-corpus/proj-syndicate.en <==
corruption|corruption|nn flourishes|flourish|nns .|.|.</pre>

- 4 source language factors (word|lemma|pos|morph)
- 3 target language factors (word|lemma|pos)