

Decoding in Statistical Machine Translation

Christian Hardmeier

2016-05-04

Mid-course Evaluation

http://stp.lingfil.uu.se/~sara/kurser/MT16/mid-course-eval.html

Decoding

The *decoder* is the part of the SMT system that creates the translations.

Given a set of models, how can we translate *efficiently* and *accurately*?

Find the best translation among all possible translations.

$$t^* = \argmax_t f(s,t) = \argmax_t \sum_i \lambda_i h_i(s,t)$$

f(s,t) Scoring function $h_i(s,t)$ Feature functions λ_i Feature weights

Model error vs. search error

- Model error: The solution with the highest score under our models is not a good translation.
- **Search error:** The decoder cannot find the solution with the highest model score.

Phrase-based SMT: Generative Model

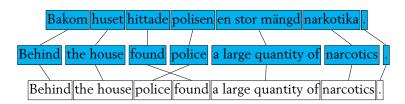
Bakom huset hittade polisen en stor mängd narkotika .

Behind the house found police a large quantity of narcotics .

Behind the house police found a large quantity of narcotics .

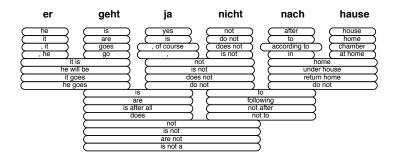
- Phrase segmentation
- Phrase translation
- 3 Output ordering

Phrase-based SMT: Generative Model



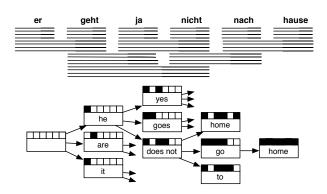
Behind the house the house police house police found police found a found a large

Translation Options

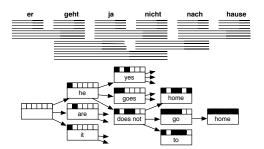


Illustrations by Philipp Koehn

Decoding by Hypothesis Expansion



- Is it always possible to translate any sentence in this way?
- What would cause the process to break down so the decoder can't find a translation that covers the whole input sentence?
- How could you make sure that this never happens?



Decoding complexity

Naively, in a sentence of N words with T translation options for each phrase, we can have

- $O(2^N)$ phrase segmentations,
- $lue{}$ $O(T^N)$ sets of phrase translations, and
- $lue{}$ O(N!) word reordering permutations.

Exploiting Model Locality

To score a new hypothesis, we need:

- the score of the previous hypothesis
- the translation model score
- the new language model scores

UPPSALA UNIVERSITET

Hypothesis recombination

- The translation model only looks at the current phrase.
- The n-gram model only looks at a window of n words.
- The choices the decoder makes are independent of everything beyond this window!
- The decoder never reconsiders its choices once they've moved out of the *n*-gram history.

Hypothesis recombination

Suppose we have these hypotheses with the same coverage, and we use a trigram language model:

After the house police	Score = -12.5
Behind the house police	Score = -11.2
, the house police	Score = -22.0

- We already know the winner!
- We can discard the competing hypotheses.

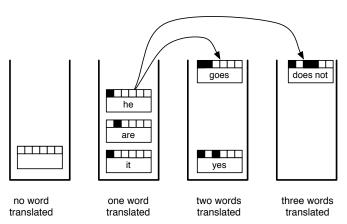
Hypothesis recombination

■ Hypothesis recombination combines branches in the search graph:

- It's a form of dynamic programming.
- Recombination reduces the search space substantially...
- ...it preserves search optimality...
- ... but decoding is still exponential!

- To make decoding really efficient, we expand only hypotheses that look promising.
- Bad hypotheses should be *pruned* early to avoid wasting time on them.
- Pruning compromises search optimality!

Stack decoding



Illustrations by Philipp Koehn

Stack decoding algorithm

```
1: AddToStack(s_0, h_0)
 2: for i = 0 ... N - 1 do
       for all h \in s_i do
 3:
                                                         are
           for all t \in T do
 4:
                                                'Ш
 5:
              if Applicable(h, t) then
                  h' \leftarrow \text{Expand}(h, t)
 6:
                  j \leftarrow \text{WordsCovered}(h) + \text{WordsCovered}(t)
 7:
                  AddToStack(s_i, h') \leftarrow pruning magic goes here
 8:
              end if
 9:
           end for
10:
       end for
11:
12: end for
13: return best hypothesis on stack s_N
```

AddToStack(s, h)

```
    for all h' ∈ s do
    if Recombinable(h, h') then
    add higher-scoring of h, h' to stack s, discard other
    return
    end if
    end for
    add h to stack s
    if stack too large then
    prune stack
    end if
```


How to prune

Histogram pruning

Keep no more than S hypotheses per stack.

Parameter: Stack size S

Threshold pruning

Discard hypotheses whose score is very low compared to that of the best hypothesis on the stack h^* :

$$Score(h) < \eta \cdot Score(h^*)$$

Parameter: Beam size η

Beam search: Complexity

- \blacksquare For each of the *N* words in the input sentence,
- \blacksquare expand S hypotheses
- \blacksquare by considering T translation options each:

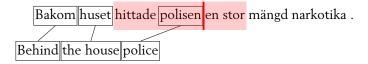
$$O(S \cdot N \cdot T)$$

The number of translation options is linear in the sentence length:

$$O(S \cdot N^2)$$

Distortion limit

- When translating between closely related languages, most reorderings are local...
- ... and anyhow, we haven't got any reasonable models for long-range reordering!
- If we impose a limit on reordering, the number of translation options to consider at each step is bounded by a constant.



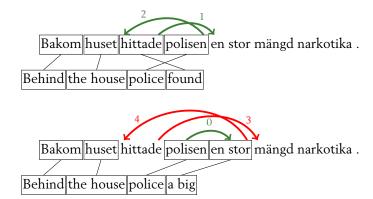
Distortion limit

- When translating between closely related languages, most reorderings are local...
- ... and anyhow, we haven't got any reasonable models for long-range reordering!
- If we impose a limit on reordering, the number of translation options to consider at each step is bounded by a constant.

The number of hypotheses expanded by a beam search decoder with limited reordering is linear in the stack size and the input size:

 $O(S \cdot N)$

Incremental scoring and cherry picking

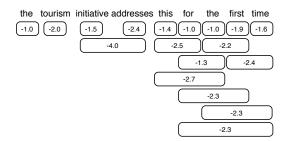


Incremental scoring and cherry picking

- The path that looks cheapest necessarily incurs a much higher cost later.
- Pruning may discard better options before this is recognised.
- To make scores more comparable, we should take into account unavoidable future costs.
- Compare hypotheses based on current score + future score.

Future cost estimation

- Calculating the future cost exactly would amount to full decoding!
- Cheaper approximations can be computed by making additional independence assumptions.
 - Assume independence between models.
 - Ignore LM history across phrase boundaries.



Illustrations by Philipp Koehn

Stack Decoding and A* Search

- Stack decoding is related to a standard search algorithm called A* search.
- In A* search, each partial hypothesis is evaluated with a *score* and a future cost estimate called *heuristic*.
- A heuristic is called *admissible* if it never underestimates the true future cost.
- \blacksquare A* search with an admissible heuristic is *optimal*.
- The future cost estimate of stack decoding is *not* admissible.

UPPSALA UNIVERSITET

DP Beam Search Decoding: Evaluation

- DP beam search is by far the most popular search algorithm for phrase-based SMT.
- It combines high speed with reasonable accuracy by exploiting the constraints of the standard models.
- It works well with very local models.
 - Sentence-internal long-range dependencies increase search errors by inhibiting recombination.
 - No cross-sentence dependencies on the target side.
- Current state of the art: Almost perfect local fluency, but serious problems with long-range reordering and discourse-level phenomena.