Introduction to Statistical Machine Translation

Fabienne Cap

UPPSALA UNIVERSITY SWEDEN

Where are we?

Туре	Date	Time	Place	Торіс	Reading / Assignments	
F	2016-03-30	10-12	6-K1031	Introduction (SS)	Koehn 1; JM 25.1-2; Hutchins; CFMF	
F	2016-03-30	14-16	6-K1031	MT evaluation (SS)	Koehn 8; JM 25.9	
F	2016-04-04	10-12	2-0076	MT in practice (Convertus) - guest lecture		
L	2016-04-06	10-12	Chomsky	MT in practice (AS)	lab report 1	
F	2016-04-11	10-12	2-0076	Introduction to SMT (FC)	Koehn Ch 4, Ch 7, KK97	
L	2016-04-13	10-12	Chomsky	Word-based SMT (SS)	lab report 2	
L	2016-04-18	10-12	Chomsky	Word-based SMT (SS)	lab report 2	
F	2016-04-18	14-16	2-1077	Machine translation at Semantix, a translation provider - guest lecture		
F	2016-04-20	10-12	6-K1031	Parallel Corpora, Alignment (AS)	Koehn 2-4, JT 3-4, KK97, KK99	
L	2016-04-25	10-12	Chomsky	Parallel corpora & alignment (AS)	lab report 3	
F	2016-04-27	10-12	2-0076	Phrase-based SMT (FC)	Koehn Ch 5	
L	2016-05-02	10-12	Chomsky	Phrase-based SMT (AS)	lab report 4	
F	2016-05-04	10-12	6-K1031	Decoding (CH)	Koehn Ch 6	
L	2016-05-09	10-12	Chomsky	Phrase-based SMT (AS)	lab report 4	
F	2016-05-11	10-12	2-0076	Tree-based SMT & MT for morphologically rich languages (SS, FC)	Koehn 10.2, 11	
F	2016-05-16	10-12	2-0076	Document-wide decoding & Neural MT (CH)		
L	2016-05-18	10-12	Chomsky	Document-wide decoding lab (AS)	oral lab report 5	
s	2016-05-23	10-12	2-0076	Seminar - master student presentations		
s	2016-05-25	10-12	6-K1031	Seminar - master student presentations		

Fabienne Cap

IntroductiontoStatistical Machine Translation

Where are we?

Туре	Date	Time	Place	Торіс	Reading / Assignments	
F	2016-03-30	10-12	6-K1031	Introduction (SS)	Koehn 1; JM 25.1-2; Hutchins; CFMF	
F	2016-03-30	14-16	6-K1031	MT evaluation (SS)	Koehn 8; JM 25.9	
F	2016-04-04	10-12	2-0076	MT in practice (Convertus) - guest lecture		
L	2016-04-06	10-12	Chomsky	MT in practice (AS)	lab report 1	
F	2016-04-11	10-12	2-0076	Introduction to SMT (FC)	Koehn Ch 4, Ch 7, KK97	
L	2016-04-13	10-12	Chomsky	Word-based SMT (SS)	lab report 2	
L	2016-04-18	10-12	Chomsky	Word-based SMT (SS)	lab report 2	
F	2016-04-18	14-16	2-1077	Machine translation at Semantix, a translation provider - guest lecture		
F	2016-04-20	10-12	6-K1031	Parallel Corpora, Alignment (AS)	Koehn 2-4, JT 3-4, KK97, KK99	
L	2016-04-25	10-12	Chomsky	Parallel corpora & alignment (AS)	lab report 3	
F	2016-04-27	10-12	2-0076	Phrase-based SMT (FC)	Koehn Ch 5	
L	2016-05-02	10-12	Chomsky	Phrase-based SMT (AS)	lab report 4	
F	2016-05-04	10-12	6-K1031	Decoding (CH)	Koehn Ch 6	
L	2016-05-09	10-12	Chomsky	Phrase-based SMT (AS)	lab report 4	
F	2016-05-11	10-12	2-0076	Tree-based SMT & MT for morphologically rich languages (SS, FC)	Koehn 10.2, 11	
F	2016-05-16	10-12	2-0076	Document-wide decoding & Neural MT (CH)		
L	2016-05-18	10-12	Chomsky	Document-wide decoding lab (AS)	oral lab report 5	
s	2016-05-23	10-12	2-0076	Seminar - master student presentations		
S	2016-05-25	10-12	6-K1031	Seminar - master student presentations		

Fabienne Cap

IntroductiontoStatistical Machine Translation

High-level introduction to Statistical Machine Translation

Word-based Translation Models

Noisy Channel Model

Language Models

TheTheDark Side[STAR WARS POSTER]Light Side(e.g. Siths)(e.g. Jedis)

Tegu mus kelias antai kash.

Translation? Anyone?

Problem:

- \rightarrow Human translators may not be available
- \rightarrow Human translators are expensive

Possible solution:

We found a collection of translated texts!

15min - 20min

May the force be with you!

What do we learn from this exercise?

- 1-to-1 translations easier to identify than 1-to-n, n-to-1 or n-to-m
- unseen words cannot be translated
- $\bullet\,$ ambiguity: some words have more than one correct translation $\to\,$ the context determines which one
- sometimes words need to be re-orderend

High-level introduction to Statistical Machine Translation

Word-based Translation Models

Noisy Channel Model

Language Models

Today, word-based translation models are **outdated**, but they introduce some **important concepts** which are still relevant for state-of-the-art SMT models:

- generative modelling
- noisy-channel model
- IBM Models 1-5
- expectation maximisation algorithm

 \rightarrow more details in Aaron's lecture on word alignment!

Generative Model: source language words are generated by target language words

Introduce an alignment function a: i \rightarrow j

a: $\{1 \rightarrow 2, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4, 5 \rightarrow 4\}$

Generative Model: source language words are generated by target language words

Introduce an alignment function a: $i \rightarrow j$

a:{1 \rightarrow 2, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4, 5 \rightarrow 4}

Translation: Decode what kind of English word sequence has generated the Sith word sequence

Dropping words:

a: $\{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4, 4 \rightarrow 4\}$

Inserting words: Introduce a special NULL word

 $a\{1\rightarrow 1, 2\rightarrow 2, 3\rightarrow 3, 4\rightarrow 0, 5\rightarrow 4\}$

Lexical Translations

- $\bullet \ {\rm tave} \to {\rm the}$
- $\bullet \ {\rm dury} \to {\rm door}$
- ${\color{black}\bullet}$ kash ${\color{black}\to}$ is, in
- $\bullet \ \mathsf{nwit} \to \mathsf{smal}$

In case of multiple translation options:

use the most common on in that context

Count translation statistics:

How often is **dury** translated into...

Translation of dury	Count
door	8,000
portal	1,600
entrance	200
doorway	150
gate	50

Estimate translation probabilities:

• Maximum Likelihood Estimation (MLE)

 $t(english|sith) = \frac{count(english,sith)}{count(sith)}$

$$t(english|sith) = \begin{cases} 0.8 & \text{if english} = \text{door} \\ 0.16 & \text{if english} = \text{portal} \\ 0.02 & \text{if english} = \text{entrance} \\ 0.015 & \text{if english} = \text{doorway} \\ 0.005 & \text{if english} = \text{gate} \end{cases}$$

High-level introduction to Statistical Machine Translation

Word-based Translation Models

Noisy Channel Model

Language Models

What is a noisy channel?

https://www.youtube.com/watch?v=OMUsVcYhERY

- origin in acoustics and information theory
- idea: foreign language sentence is a message distorted through a noisy channel
- decode distorted message and restore original message
- use two models:
 - source model p(Source) (= language model)
 - channel model p(Recieved|Source) (= translation model)

Caution Confusing Terminology!!!

Noisy Channel Model	SMT	our example	
Source signal	(desired) SMT output	English toxt	
Source signal	target language text		
(noisy) Channel	Translation model		
Reciever	SMT input	Sith toxt	
(distorted message)	source language text	Sith text	

Use Bayes' rule to decompose P(english|sith) into

- Translation Model P(sith|english)
- Language Model P(english)

$$argmax_e P(e|s) = argmax_e \frac{P(s|e)*P(e)}{P(s)}$$
$$= argmax_e P(s|e)*P(e)$$

Translation Model: prefers adequate translations

- P(Tegu mus kelias antai kash|Let's climb in there) >
- P(Tegu mus kellias antai kash|Let's climb in here) >
- P(Tegu mus kelias antai kash|Let's clamber in there)

Language Model: prefers grammatical/fluent sequences

• P(Let's climb in there) > P(Let's there climb in)

High-level introduction to Statistical Machine Translation

Word-based Translation Models

Noisy Channel Model

Language Models

Prefer one string over another (ensure fluency)

- "small step": 5,880,000 hits on Google
- "little step": 1,780,000 hits on Google

Language Model:

estimate how likely a string is in a given language:

 P_{LM} (the door is small) > P_{LM} (small the is door) P_{LM} (let's climb in there) > P_{LM} (let's climb is there)

Markov chain

 $p(w_1, w_2, ..., w_n) = p(w_1)p(w_2|w_1)...p(w_n|w_1, w_2, ..., w_{n-1})$

Markov assumption

$$p(w_n|w_1, w_2, ..., w_{n-1}) = p(w_n|w_{n-m}, ..., w_{n-2}, w_{n-1})$$

Maximum likelihood estimation (e.g. 3-gram)

 $p(w_3|w1,w2) = \frac{count(w_1,w2,w3)}{\sum_w count(w_1,w_2,w)}$

Add **special markers** at the start and the end of the sentence! \rightarrow certain tokens often appear at the start or at the end

Smoothing

- \bullet big problem: unseen n-grams \rightarrow p(e) = 0
- smoothing: reserve probability mass for unseen events

Interpolation and backoff

 \rightarrow combine higher-order and lower-order models

N-Gram Language Models - Example

p(he, has, there, not) =

$$0.037 * 0.00025 * 1.2 e^{-5} * 0.00061 * 0.15 * 0 = 0$$

p(he, has, not, been) =

 $0.037 * 0.029 * 0.385 * 0.020 * 0.297 * 0.210 = 5,15e^{-7}$

High-level introduction to Statistical Machine Translation

Word-based Translation Models

Noisy Channel Model

Language Models

IBM Models for Word Alignment

A short overview on IBM Models for Word Alignment

IBM Model 1 only uses lexical translation

das		Haus			ist			klein	
e	t(e f)	e	t(e f)		e	t(e f)		e	t(e f)
the	0.7	house	0.8		is	0.8		small	0.4
that	0.15	building	0.16		's	0.16		little	0.4
which	0.075	home	0.02		exists	0.02		short	0.1
who	0.05	household	0.015		has	0.015		minor	0.06
this	0.025	shell	0.005		are	0.005		petty	0.04

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028\epsilon \end{split}$$

Adding a model of alignment

Motivation

- Absolute position for distortion feels wrong
- Words do not move independently
- Some words tend to move and some not
- \rightarrow Introduce a relative distortion model
- \rightarrow Introduce a dependence on word classes

IBM Models 1-4 are deficient

- some impossible translations have positive probabilities
- multiple output words may be placed in the same place
- probability mass is wasted!

IBM Model 5

- fix deficiency by keeping track of vacancies
- details: see text book

Models with increasing complexity

Higher models include more information

IBM Model 1	lexical translation
IBM Model 2	adds absolute alignment model
IBM Model 3	adds fertility model
IBM Model 4	relative alignment model
IBM Model 5	fixes deficiency

Take Home Messages from Today??

Where do we go?

Туре	Date	Time	Place	Торіс	Reading / Assignments
F	2016-03-30	10-12	6-K1031	Introduction (SS)	Koehn 1; JM 25.1-2; Hutchins; CFMF
F	2016-03-30	14-16	6-K1031	MT evaluation (SS)	Koehn 8; JM 25.9
F	2016-04-04	10-12	2-0076	MT in practice (Convertus) - guest lecture	
L	2016-04-06	10-12	Chomsky	MT in practice (AS)	lab report 1
F	2016-04-11	10-12	2-0076	Introduction to SMT (FC)	Koehn Ch 4, Ch 7, KK97
L	2016-04-13	10-12	Chomsky	Word-based SMT (SS)	lab report 2
L	2016-04-18	10-12	Chomsky	Word-based SMT (SS)	lab report 2
F	2016-04-18	14-16	2-1077	Machine translation at Semantix, a translation provider - guest lecture	
F	2016-04-20	10-12	6-K1031	Parallel Corpora, Alignment (AS)	Koehn 2-4, JT 3-4, KK97, KK99
L	2016-04-25	10-12	Chomsky	Parallel corpora & alignment (AS)	lab report 3
F	2016-04-27	10-12	2-0076	Phrase-based SMT (FC)	Koehn Ch 5
L	2016-05-02	10-12	Chomsky	Phrase-based SMT (AS)	lab report 4
F	2016-05-04	10-12	6-K1031	Decoding (CH)	Koehn Ch 6
L	2016-05-09	10-12	Chomsky	Phrase-based SMT (AS)	lab report 4
F	2016-05-11	10-12	2-0076	Tree-based SMT & MT for morphologically rich languages (SS, FC)	Koehn 10.2, 11
F	2016-05-16	10-12	2-0076	Document-wide decoding & Neural MT (CH)	
L	2016-05-18	10-12	Chomsky	Document-wide decoding lab (AS)	oral lab report 5
s	2016-05-23	10-12	2-0076	Seminar - master student presentations	
s	2016-05-25	10-12	6-K1031	Seminar - master student presentations	

Fabienne Cap

IntroductiontoStatistical Machine Translation

https://www.youtube.com/watch?v=GMi4MtyDg40