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Activities - dependency parsing

• 4 lectures (December) 

• 1 literature seminar (January) 

• 1 or 2 assignment (DL: January 12)

• Project (master 7.5; DL: January 12)

• Supervision on demand, by email or book a 
meeting

• Also: masters: literature review, DL Dec 18



Overview

• Arc-factored dependency parsing

Collins’ algorithm

Eisner’s algorithm

• Evaluation of dependency parsers

• Transition-based dependency parsing

The arc-standard algorithm

• Projectivity

• Reordering and oracles
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Dependency grammar

• The term ‘dependency grammar’ 
does not refer to a specific grammar formalism.

• Rather, it refers to a specific way 
to describe the syntactic structure of a sentence.



The notion of dependency

• The basic observation behind constituency 
is that groups of words may act as one unit.

Example:  noun phrase, prepositional phrase

• The basic observation behind dependency 
is that words have grammatical functions 
with respect to other words in the sentence.

Example:  subject, modifier

Dependency grammar



Phrase structure trees
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Dependency trees

• In an arc  h → d,  the word h is called the head, and the 
word d is called the dependent.

• The arcs form a rooted tree.

• Each arc has a label, l, and an arc can be described as (h, d, l)

booked a flightI from LA
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det pmod
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Dependency trees

• In an arc  h → d,  the word h is called the head, and the 
word d is called the dependent.

• The arcs form a rooted tree.
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Heads in phrase structure grammar

• In phrase structure grammar, 
ideas from dependency grammar 
can be found in the notion of heads.

• Roughly speaking, the head of a phrase 
is the most important word of the phrase: 
the word that determines the phrase function.

Examples:  noun in a noun phrase, 
preposition in a prepositional phrase

Dependency grammar
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The history of dependency grammar

• The notion of dependency 
can be found in some of 
the earliest formal grammars.

• Modern dependency grammar 
is attributed to 
Lucien Tesnière (1893–1954).

• Recent years have seen 
a revived interest in dependency-based
description of natural language syntax.

Dependency grammar



Linguistic resources

• Descriptive dependency grammars exist 
for some natural languages.

• Dependency treebanks exist 
for a wide range of natural languages.

• These treebanks can be used to train 
accurate and efficient dependency parsers.

• We will not use grammars in the parsing 
algorithms we discuss in the course

Dependency grammar



Projectivity

• An important characteristic of dependency trees 
is projectivity

• A dependency tree is projective if: 

• For every arc in the tree, there is a directed 
path from the head of the arc to all words 
occurring between the head and the 
dependent (that is, the arc (i,l,j) implies that 

i →∗ k for every k such that min(i, j) < k < 

max(i, j))



Projective and non-projective trees

2 JOAKIM NIVRE

Figure 2. Non-projective dependency tree for an English sentence.

In order to be a well-formed dependency tree, the directed graph must also satisfy the following
conditions:

(1) Root: The dummy root node 0 does not have any incoming arc (that is, there is no arc
of the form (i, l, 0)).

(2) Single-Head: Every node has at most one incoming arc (that is, the arc (i, l, j) rules
out all arcs of the form (k, l0, j) where k 6= i or l0 6= l).

(3) Connected: The graph is weakly connected (that is, in the corresponding undirected
graph there is a path between any two nodes i and j).

In addition, a dependency tree may or may not satisfy the following condition:

(4) Projective: For every arc in the tree, there is a directed path from the head of the
arc to all words occurring between the head and the dependent (that is, the arc (i, l, j)
implies that i !⇤ k for every k such that min(i, j) < k < max(i, j)).

Projectivity is a notion that has been widely discussed in the literature on dependency grammar
and dependency parsing. Broadly speaking, dependency-based grammar theories and annotation
schemes normally do not assume that all dependency trees are projective, because some linguistic
phenomena involving discontinuous structures can only be adequately represented using non-
projective trees. By contrast, many dependency-based syntactic parsers assume that dependency
trees are projective, because it makes the parsing problem considerably less complex. Figure 2
shows a non-projective dependency tree for an English sentence.

The parsing problem for a dependency parser is to find the optimal dependency tree y given
an input sentence x. Note that this amounts to assigning a syntactic head i and a label l to
every node j corresponding to a word x

j

in such a way that the resulting graph is a tree rooted
at the node 0. This makes the parsing problem more constrained than in the case of phrase
structure parsing, as the nodes are given by the input and only the arcs have to be inferred.
In graph-theoretic terms, this is equivalent to finding a spanning tree in the complete graph
G

x

= (V
x

, V
x

⇥ L ⇥ V
x

) containing all possible arcs (i, l, j) (for nodes i, j and labels l), a fact
that is exploited in so-called graph-based models for dependency parsing.

Another di↵erence compared to phrase structure parsing is that there are no part-of-speech
tags in the syntactic representations (because there are no pre-terminal nodes, only terminal
nodes). However, most dependency parsers instead assume that part-of-speech tags are part of
the input, so that the input sentence x actually consists of tokens x1, . . . , xn

annotated with their
parts of speech t1, . . . , tn (and possibly additional information such as lemmas and morphosyn-
tactic features). This information can therefore be exploited in the feature representations used
to select the optimal parse, which turns out to be of crucial importance.

DEPENDENCY PARSING

JOAKIM NIVRE
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A dependency parser analyzes syntactic structure by identifying dependency relations between
words. In this lecture, I will introduce dependency-based syntactic representations (§1), arc-
factored models for dependency parsing (§2), and online learning algorithms for such models
(§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm
for projective dependency parsing (§4) and the Chu-Liu-Edmonds spanning tree algorithm for
non-projective dependency parsing (§5).

1. Dependency Trees

In a dependency tree, a sentence is analyzed by connecting words by binary asymmetrical relations
called dependencies, which are categorized according to the functional role of the dependent word.
Formally speaking, a dependency tree for a sentence x can be defined as a labeled directed graph
G = (V

x

, A), where V
x

= {0, . . . , n} is a set of nodes, one for each position of a word x
i

in the
sentence plus a node 0 corresponding to a dummy word root at the beginning of the sentence,
and where A ✓ (V

x

⇥L⇥V
x

) is a set of labeled arcs of the form (i, l, j), where i and j are nodes
and l is a label taken from some inventory L. Figure 1 shows a typical dependency tree for an
English sentence with a dummy root node.

Date: 2013-03-01.

Figure 1. Dependency tree for an English sentence with dummy root node.
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Projectivity and dependency parsing

• Many dependency parsing algorithms can only 
handle projective trees

• Non-projective trees do occur in natural 
language

• How often depends on the language (and 
treebank)



Projectivity in the course

• The algorithms we will discuss in detail during the 
lectures will only concern projective parsing

• Non-projective parsing:

• Seminar 2: Pseudo-projective parsing

• Lecture 10: Transition-based parsing + swap

• Other variants mentioned briefly

• You can read more about it in the course 
book!



Arc-factored dependency parsing



Ambiguity

Just like phrase structure parsing, 
dependency parsing has to deal with ambiguity.
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Disambiguation

• We need to disambiguate between 
alternative analyses.

• We develop mechanisms for scoring dependency 
trees, and disambiguate by choosing 
a dependency tree with the highest score.



Scoring models and parsing algorithms

Distinguish two aspects:

• Scoring model: 
How do we want to score dependency trees?

• Parsing algorithm: 
How do we compute a highest-scoring 
dependency tree under the given scoring model?



The arc-factored model

• Split the dependency tree t into parts p1, ..., pn, 
score each of the parts individually, 
and combine the score into a simple sum.

score(t) = score(p1) + … + score(pn)

• The simplest scoring model is 
the arc-factored model, where 
the scored parts are the arcs of the tree.



Features

booked a flightI from LA

subj

dobj

det pmod

• To score an arc, we define features that are 
likely to be relevant in the context of parsing.

• We represent an arc by its feature vector.

Arc-factored dependency parsing



Examples of features

Arc-factored dependency parsing



Examples of features

• ‘The head is a verb.’

Arc-factored dependency parsing



Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’
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Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb 
and the dependent is a noun.’
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Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb 
and the dependent is a noun.’

• ‘The head is a verb 
and the predecessor of the head is a pronoun.’
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Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb 
and the dependent is a noun.’

• ‘The head is a verb 
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

Arc-factored dependency parsing



Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb 
and the dependent is a noun.’

• ‘The head is a verb 
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

• ‘The arc has length 2.’

Arc-factored dependency parsing



Feature vectors

Feature:  ‘The head is a verb.’
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Feature vectors

Feature:  ‘The head is a verb.’
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Implementation of feature vectors

• We assign each feature a unique number.

• For each arc, we collect the numbers 
of those features that apply to that arc.

• The feature vector of the arc 
is the list of those numbers.

Example:  [1, 2, 42, 313, 1977, 2008, 2010]

Arc-factored dependency parsing



Feature weights

• Arc-factored dependency parsers 
require a training phase.

• During training, our goal is to assign, 
to each feature fi, a feature weight wi.

• Intuitively, the weight wi quantifies the effect 
of the feature fi on the likelihood of the arc.

How likely is it that we will see 
an arc with this feature in a useful dependency tree?

Arc-factored dependency parsing



Feature weights

We define the score of an arc h → d as 
the weighted sum of all features of that arc:

score(h → d)  =  f1w1 + … + fnwn

Arc-factored dependency parsing



Training using structured prediction

• Take a sentence w and a gold-standard 
dependency tree g for w.

• Compute the highest-scoring dependency tree 
under the current weights; call it p.

• Increase the weights of all features 
that are in g but not in p.

• Decrease the weights of all features 
that are in p but not in g.

Arc-factored dependency parsing



Training using structured prediction

• Training involves repeatedly parsing (treebank) 
sentences and refining the weights.

• Hence, training presupposes an efficient parsing 
algorithm.

Arc-factored dependency parsing



Higher order models

• The arc-factored model is a first-order model, because 
scored subgraphs consist of a single arc.

• An nth-order model scores subgraphs consisting of (at 
most) n arcs.

• Second-order: siblings, grand-parents

• Third-order: tri-siblings, grand-siblings

• Higher-order models capture more linguistic structure 
and give higher parsing accuracy, but are less efficient

Arc-factored dependency parsing



Parsing algorithms

• Projective parsing

• Inspired by the CKY algorithm

• Collins’ algorithm

• Eisner’s algorithm

• Non-projective parsing:

• Minimum spanning tree (MST) algorithms

Arc-factored dependency parsing



Graph-based parsing

• Arc-factored parsing is an instance of graph-based 
dependency parsing

• Because it scores the dependency graph (tree)

• Graph-based models are often contrasted with 
transition-based models (Dec 12+14)

• There are also grammar-based methods, which 
we will not discuss

Arc-factored dependency parsing



Summary

• The term ‘arc-factored dependency parsing’ 
refers to dependency parsers that 
score a dependency tree by scoring its arcs.

• Arcs are scored by defining features 
and assigning weights to these features.

• The resulting parsers can be trained 
using structured prediction.

• More powerful scoring models exist.

Arc-factored dependency parsing



Overview

• Arc-factored dependency parsing

Collins’ algorithm

Eisner’s algorithm

• Evaluation of dependency parsers

• Transition-based dependency parsing

The arc-standard algorithm

• Projectivity

• Reordering and oracles
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Collins’ algorithm

• Collin’s algorithm is a simple algorithm 
for computing the highest-scoring dependency 
tree under an arc-factored scoring model.

• It can be understood as an extension 
of the CKY algorithm to dependency parsing.

• Like the CKY algorithm, it can be characterized 
as a bottom-up algorithm 
based on dynamic programming.



Signatures, CKY

[min, max, C]

C

min max
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Signatures, Collins’

[min, max, root]

root

min max

Collins’ algorithm



Initialization

booked a flightI from LA
0 I 2 3 4 5
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Initialization

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA][1, 2, booked][0, 1, I] [2, 3, a]

Collins’ algorithm



Adding a left-to-right arc
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Adding a left-to-right arc

booked a flightI from LA
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Adding a left-to-right arc
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Adding a left-to-right arc
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Adding a left-to-right arc

Collins’ algorithm



Adding a left-to-right arc
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Adding a left-to-right arc
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Adding a left-to-right arc
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Adding a left-to-right arc

score(t)  =  score(t1) + score(t2) + score(l → r)

Collins’ algorithm

l

min max
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Adding a left-to-right arc

for each [min, max] with max - min > 1 do

  for each l from min to max - 2 do

    double best = score[min][max][l]

    for each r from l + 1 to max - 1 do

      for each mid from l + 1 to r do

        t1 = score[min][mid][l]

        t2 = score[mid][max][r]

        double current = t1 + t2 + score(l ! r)

        if current > best then

          best = current

    score[min][max][l] = best

Collins’ algorithm



Adding a right-to-left arc
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Adding a right-to-left arc
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Adding a right-to-left arc
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Adding a right-to-left arc

booked a flightI from LA
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Adding a right-to-left arc
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Adding a right-to-left arc
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Adding a right-to-left arc
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Adding a right-to-left arc
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Adding a right-to-left arc

Collins’ algorithm

score(t)  =  score(t1) + score(t2) + score(r → l)

r

min max
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Adding a right-to-left arc

for each [min, max] with max - min > 1 do

  for each r from min + 1 to max - 1 do

    double best = score[min][max][r]

    for each l from min to r - 1 do

      for each mid from l + 1 to r do

        t1 = score[min][mid][l]

        t2 = score[mid][max][r]

        double current = t1 + t2 + score(r ! l)

        if current > best then

          best = current

    score[min][max][r] = best

Collins’ algorithm



Finishing up
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Finishing up
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Finishing up
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Finishing up

booked a flightI from LA
0 I 2 3 4 5
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Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

dobj

[0, 5, booked]



Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

  for each r from min + 1 to max - 1 do

    double best = score[min][max][r]

    for each l from min to r - 1 do

      for each mid from l + 1 to r do

        t1 = score[min][mid][l]

        t2 = score[mid][max][r]

        double current = t1 + t2 + score(r ! l)

        if current > best then

          best = current

    score[min][max][r] = best

Collins’ algorithm



Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

  for each r from min + 1 to max - 1 do

    double best = score[min][max][r]

    for each l from min to r - 1 do

      for each mid from l + 1 to r do

        t1 = score[min][mid][l]

        t2 = score[mid][max][r]

        double current = t1 + t2 + score(r ! l)

        if current > best then
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    score[min][max][r] = best
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Complexity analysis

• Runtime?

• Space?
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Complexity analysis

• Space requirement: 
O(|w|3)

• Runtime requirement: 
O(|w|5)

Collins’ algorithm



Summary

• Collins’ algorithm is a CKY-style algorithm 
for computing the highest-scoring dependency 
tree under an arc-factored scoring model.

• It runs in time O(|w|5). 
This may not be practical for long sentences.

• We have not discussed labels yet - we will do that 
next lecture

Collins’ algorithm


