
Dependency grammar and
dependency parsing

Syntactic analysis (5LN455)

2016-12-05

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

Activities - dependency parsing

• 4 lectures (December)

• 1 literature seminar (January)

• 1 or 2 assignment (DL: January 12)

• Project (master 7.5; DL: January 12)

• Supervision on demand, by email or book a
meeting

• Also: masters: literature review, DL Dec 18

Overview

• Arc-factored dependency parsing

Collins’ algorithm

Eisner’s algorithm

• Evaluation of dependency parsers

• Transition-based dependency parsing

The arc-standard algorithm

• Projectivity

• Reordering and oracles

Dependency grammar

Dependency grammar

• The term ‘dependency grammar’
does not refer to a specific grammar formalism.

• Rather, it refers to a specific way
to describe the syntactic structure of a sentence.

The notion of dependency

• The basic observation behind constituency
is that groups of words may act as one unit.

Example: noun phrase, prepositional phrase

• The basic observation behind dependency
is that words have grammatical functions
with respect to other words in the sentence.

Example: subject, modifier

Dependency grammar

Phrase structure trees

booked

a

flight

Nom PP

NomDet

NPVerb

I

Pro

VPNP

S

from LANoun

Dependency grammar

Dependency trees

• In an arc h → d, the word h is called the head, and the
word d is called the dependent.

• The arcs form a rooted tree.

• Each arc has a label, l, and an arc can be described as (h, d, l)

booked a flightI from LA

subj

dobj

det pmod

Dependency grammar

Dependency trees

• In an arc h → d, the word h is called the head, and the
word d is called the dependent.

• The arcs form a rooted tree.

• Each arc has a label, l, and an arc can be described as (h, d, l)

booked a flightI from LA

subj

dobj

det pmod

Dependency grammar

ROOT

root

Dependency trees

• In an arc h → d, the word h is called the head, and the
word d is called the dependent.

• The arcs form a rooted tree.

• Each arc has a label, l, and an arc can be described as (h, d, l)

booked a flightI from LA

subj

dobj

det pmod

Dependency grammar

root

ROOT

Heads in phrase structure grammar

• In phrase structure grammar,
ideas from dependency grammar
can be found in the notion of heads.

• Roughly speaking, the head of a phrase
is the most important word of the phrase:
the word that determines the phrase function.

Examples: noun in a noun phrase,
preposition in a prepositional phrase

Dependency grammar

Heads in phrase structure grammar

booked

a

flight

Nom PP

NomDet

NPVerb

I

Pro

VPNP

S

from LANoun

Dependency grammar

The history of dependency grammar

• The notion of dependency
can be found in some of
the earliest formal grammars.

• Modern dependency grammar
is attributed to
Lucien Tesnière (1893–1954).

• Recent years have seen
a revived interest in dependency-based
description of natural language syntax.

Dependency grammar

Linguistic resources

• Descriptive dependency grammars exist
for some natural languages.

• Dependency treebanks exist
for a wide range of natural languages.

• These treebanks can be used to train
accurate and efficient dependency parsers.

• We will not use grammars in the parsing
algorithms we discuss in the course

Dependency grammar

Projectivity

• An important characteristic of dependency trees
is projectivity

• A dependency tree is projective if:

• For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that

i →∗ k for every k such that min(i, j) < k <

max(i, j))

Projective and non-projective trees

2 JOAKIM NIVRE

Figure 2. Non-projective dependency tree for an English sentence.

In order to be a well-formed dependency tree, the directed graph must also satisfy the following
conditions:

(1) Root: The dummy root node 0 does not have any incoming arc (that is, there is no arc
of the form (i, l, 0)).

(2) Single-Head: Every node has at most one incoming arc (that is, the arc (i, l, j) rules
out all arcs of the form (k, l0, j) where k 6= i or l0 6= l).

(3) Connected: The graph is weakly connected (that is, in the corresponding undirected
graph there is a path between any two nodes i and j).

In addition, a dependency tree may or may not satisfy the following condition:

(4) Projective: For every arc in the tree, there is a directed path from the head of the
arc to all words occurring between the head and the dependent (that is, the arc (i, l, j)
implies that i !⇤ k for every k such that min(i, j) < k < max(i, j)).

Projectivity is a notion that has been widely discussed in the literature on dependency grammar
and dependency parsing. Broadly speaking, dependency-based grammar theories and annotation
schemes normally do not assume that all dependency trees are projective, because some linguistic
phenomena involving discontinuous structures can only be adequately represented using non-
projective trees. By contrast, many dependency-based syntactic parsers assume that dependency
trees are projective, because it makes the parsing problem considerably less complex. Figure 2
shows a non-projective dependency tree for an English sentence.

The parsing problem for a dependency parser is to find the optimal dependency tree y given
an input sentence x. Note that this amounts to assigning a syntactic head i and a label l to
every node j corresponding to a word x

j

in such a way that the resulting graph is a tree rooted
at the node 0. This makes the parsing problem more constrained than in the case of phrase
structure parsing, as the nodes are given by the input and only the arcs have to be inferred.
In graph-theoretic terms, this is equivalent to finding a spanning tree in the complete graph
G

x

= (V
x

, V
x

⇥ L ⇥ V
x

) containing all possible arcs (i, l, j) (for nodes i, j and labels l), a fact
that is exploited in so-called graph-based models for dependency parsing.

Another di↵erence compared to phrase structure parsing is that there are no part-of-speech
tags in the syntactic representations (because there are no pre-terminal nodes, only terminal
nodes). However, most dependency parsers instead assume that part-of-speech tags are part of
the input, so that the input sentence x actually consists of tokens x1, . . . , xn

annotated with their
parts of speech t1, . . . , tn (and possibly additional information such as lemmas and morphosyn-
tactic features). This information can therefore be exploited in the feature representations used
to select the optimal parse, which turns out to be of crucial importance.

DEPENDENCY PARSING

JOAKIM NIVRE

Contents

1. Dependency Trees 1
2. Arc-Factored Models 3
3. Online Learning 3
4. Eisner’s Algorithm 4
5. Spanning Tree Parsing 6
References 7

A dependency parser analyzes syntactic structure by identifying dependency relations between
words. In this lecture, I will introduce dependency-based syntactic representations (§1), arc-
factored models for dependency parsing (§2), and online learning algorithms for such models
(§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm
for projective dependency parsing (§4) and the Chu-Liu-Edmonds spanning tree algorithm for
non-projective dependency parsing (§5).

1. Dependency Trees

In a dependency tree, a sentence is analyzed by connecting words by binary asymmetrical relations
called dependencies, which are categorized according to the functional role of the dependent word.
Formally speaking, a dependency tree for a sentence x can be defined as a labeled directed graph
G = (V

x

, A), where V
x

= {0, . . . , n} is a set of nodes, one for each position of a word x
i

in the
sentence plus a node 0 corresponding to a dummy word root at the beginning of the sentence,
and where A ✓ (V

x

⇥L⇥V
x

) is a set of labeled arcs of the form (i, l, j), where i and j are nodes
and l is a label taken from some inventory L. Figure 1 shows a typical dependency tree for an
English sentence with a dummy root node.

Date: 2013-03-01.

Figure 1. Dependency tree for an English sentence with dummy root node.

1

Projectivity and dependency parsing

• Many dependency parsing algorithms can only
handle projective trees

• Non-projective trees do occur in natural
language

• How often depends on the language (and
treebank)

Projectivity in the course

• The algorithms we will discuss in detail during the
lectures will only concern projective parsing

• Non-projective parsing:

• Seminar 2: Pseudo-projective parsing

• Lecture 10: Transition-based parsing + swap

• Other variants mentioned briefly

• You can read more about it in the course
book!

Arc-factored dependency parsing

Ambiguity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

booked a flightI from LA

subj

dobj

det pmod

Ambiguity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

booked a flightI from LA

subj

dobj

det

pmod

Disambiguation

• We need to disambiguate between
alternative analyses.

• We develop mechanisms for scoring dependency
trees, and disambiguate by choosing
a dependency tree with the highest score.

Scoring models and parsing algorithms

Distinguish two aspects:

• Scoring model:
How do we want to score dependency trees?

• Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?

The arc-factored model

• Split the dependency tree t into parts p1, ..., pn,
score each of the parts individually,
and combine the score into a simple sum.

score(t) = score(p1) + … + score(pn)

• The simplest scoring model is
the arc-factored model, where
the scored parts are the arcs of the tree.

Features

booked a flightI from LA

subj

dobj

det pmod

• To score an arc, we define features that are
likely to be relevant in the context of parsing.

• We represent an arc by its feature vector.

Arc-factored dependency parsing

Examples of features

Arc-factored dependency parsing

Examples of features

• ‘The head is a verb.’

Arc-factored dependency parsing

Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

Arc-factored dependency parsing

Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb
and the dependent is a noun.’

Arc-factored dependency parsing

Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb
and the dependent is a noun.’

• ‘The head is a verb
and the predecessor of the head is a pronoun.’

Arc-factored dependency parsing

Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb
and the dependent is a noun.’

• ‘The head is a verb
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

Arc-factored dependency parsing

Examples of features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb
and the dependent is a noun.’

• ‘The head is a verb
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

• ‘The arc has length 2.’

Arc-factored dependency parsing

Feature vectors

Feature: ‘The head is a verb.’

Fe
at

ur
e:

 ‘
T

he
 d

ep
en

de
nt

 is
 a

 n
ou

n.
’

0

0 1

1

Arc-factored dependency parsing

Feature vectors

Feature: ‘The head is a verb.’

Fe
at

ur
e:

 ‘
T

he
 d

ep
en

de
nt

 is
 a

 n
ou

n.
’

0

0 1

1

booked → I

booked → flight

flight → a

flight → from LA

Arc-factored dependency parsing

Implementation of feature vectors

• We assign each feature a unique number.

• For each arc, we collect the numbers
of those features that apply to that arc.

• The feature vector of the arc
is the list of those numbers.

Example: [1, 2, 42, 313, 1977, 2008, 2010]

Arc-factored dependency parsing

Feature weights

• Arc-factored dependency parsers
require a training phase.

• During training, our goal is to assign,
to each feature fi, a feature weight wi.

• Intuitively, the weight wi quantifies the effect
of the feature fi on the likelihood of the arc.

How likely is it that we will see
an arc with this feature in a useful dependency tree?

Arc-factored dependency parsing

Feature weights

We define the score of an arc h → d as
the weighted sum of all features of that arc:

score(h → d) = f1w1 + … + fnwn

Arc-factored dependency parsing

Training using structured prediction

• Take a sentence w and a gold-standard
dependency tree g for w.

• Compute the highest-scoring dependency tree
under the current weights; call it p.

• Increase the weights of all features
that are in g but not in p.

• Decrease the weights of all features
that are in p but not in g.

Arc-factored dependency parsing

Training using structured prediction

• Training involves repeatedly parsing (treebank)
sentences and refining the weights.

• Hence, training presupposes an efficient parsing
algorithm.

Arc-factored dependency parsing

Higher order models

• The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

• An nth-order model scores subgraphs consisting of (at
most) n arcs.

• Second-order: siblings, grand-parents

• Third-order: tri-siblings, grand-siblings

• Higher-order models capture more linguistic structure
and give higher parsing accuracy, but are less efficient

Arc-factored dependency parsing

Parsing algorithms

• Projective parsing

• Inspired by the CKY algorithm

• Collins’ algorithm

• Eisner’s algorithm

• Non-projective parsing:

• Minimum spanning tree (MST) algorithms

Arc-factored dependency parsing

Graph-based parsing

• Arc-factored parsing is an instance of graph-based
dependency parsing

• Because it scores the dependency graph (tree)

• Graph-based models are often contrasted with
transition-based models (Dec 12+14)

• There are also grammar-based methods, which
we will not discuss

Arc-factored dependency parsing

Summary

• The term ‘arc-factored dependency parsing’
refers to dependency parsers that
score a dependency tree by scoring its arcs.

• Arcs are scored by defining features
and assigning weights to these features.

• The resulting parsers can be trained
using structured prediction.

• More powerful scoring models exist.

Arc-factored dependency parsing

Overview

• Arc-factored dependency parsing

Collins’ algorithm

Eisner’s algorithm

• Evaluation of dependency parsers

• Transition-based dependency parsing

The arc-standard algorithm

• Projectivity

• Reordering and oracles

Collins’ algorithm

Collins’ algorithm

• Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

• It can be understood as an extension
of the CKY algorithm to dependency parsing.

• Like the CKY algorithm, it can be characterized
as a bottom-up algorithm
based on dynamic programming.

Signatures, CKY

[min, max, C]

C

min max

Collins’ algorithm

Signatures, Collins’

[min, max, root]

root

min max

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA][1, 2, booked][0, 1, I] [2, 3, a]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 5, flight]

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

score(t) = score(t1) + score(t2) + score(l → r)

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

for each [min, max] with max - min > 1 do

 for each l from min to max - 2 do

 double best = score[min][max][l]

 for each r from l + 1 to max - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(l ! r)

 if current > best then

 best = current

 score[min][max][l] = best

Collins’ algorithm

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 1, I] [1, 2, booked]

pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 1, I] [1, 2, booked]

subj pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 2, booked]

subj pmod

Adding a right-to-left arc

Collins’ algorithm

Adding a right-to-left arc

Collins’ algorithm

r

max

t2

l

min mid

t1

Adding a right-to-left arc

Collins’ algorithm

r

max

t2

l

min mid

t1

Adding a right-to-left arc

Collins’ algorithm

r

min max

t

Adding a right-to-left arc

Collins’ algorithm

score(t) = score(t1) + score(t2) + score(r → l)

r

min max

t

Adding a right-to-left arc

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r ! l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmod

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmod

[3, 5, flight][2, 3, a]

det

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

[2, 5, flight]

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

[2, 5, flight][0, 2, booked]

dobj

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

dobj

[0, 5, booked]

Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r ! l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r ! l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

r

max

t2

l

min mid

t1

Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r ! l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

r

max

t2

l

min mid

t1

Complexity analysis

• Space requirement:
O(|w|3)

• Runtime requirement:
O(|w|5)

Collins’ algorithm

Summary

• Collins’ algorithm is a CKY-style algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

• It runs in time O(|w|5).
This may not be practical for long sentences.

• We have not discussed labels yet - we will do that
next lecture

Collins’ algorithm

