UPPSALA
UNIVERSITET

Transition-based
dependency parsing

Syntactic analysis (5LN455)
2016-12-13

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

UPPSALA

mwverser - Qverview

* Transition-based dependency parsing
The arc-standard algorithm

* Projectivity

UPPSALA
UNIVERSITET

Transition-based dependency parsing

UPPSALA

swversrer— [ransition-based dependency parsing

Eisner’s algorithm runs in time O(|w/3).
This may be too much if a lot of data is involved.

ldea: Design a dumber but really fast algorithm
and let the machine learning do the rest.

Eisner’s algorithm searches over many different
dependency trees at the same time.

A transition-based dependency parser only builds
one tree, in one left-to-right sweep over the input.

Transition-based dependency parsing

UPPSALA

swversrer— [ransition-based dependency parsing

The parser starts in an initial configuration.

At each step, it asks a guide to choose
between one of several transitions (actions)
into new configurations.

Parsing stops if the parser reaches a
terminal configuration.

The parser returns the dependency tree
associated with the terminal configuration.

Transition-based dependency parsing

UPPSALA

svesrer (Generic parsing algorithm

Configuration ¢ = parser.getInitialConfiguration(sentence)
while ¢ is not a terminal configuration do

Transition t = guide.getNextTransition(c)

c = c.makeTransition(t)

return c.getGraph()

Transition-based dependency parsing

UPPSALA

oversirer - Variation

Transition-based dependency parsers differ

with respect to the configurations
and the transitions that they use.

UPPSALA
UNIVERSITET

The arc-standard algorithm

UPPSALA

swersrer | he arc-standard algorithm

* The arc-standard algorithm is a simple algorithm
for transition-based dependency parsing.

* ltis very similar to shift—reduce parsing
as it is known for context-free grammars.

* |t is implemented in most practical transition-
based dependency parsers, including MaltParser.

The arc-standard algorithm

UPPSALA

avesmer Configurations

A configuration for a sentence w =w| ... w,
consists of three components:

* a buffer containing words of w
* a stack containing words of w

* the dependency graph constructed so far

The arc-standard algorithm

UPPSALA

avesmer Configurations

* Initial configuration:

* All words are in the buffer.

* The stack is empty.

* The dependency graph is empty.
* Terminal configuration:

* The buffer is empty.

* The stack contains a single word.

The arc-standard algorithm

UPPSALA

wvesrer Configurations, with root

* Initial configuration:
* All words are in the buffer.
* The stack contains the ROOT word.
* The dependency graph is empty.

* Terminal configuration:

* The buffer is empty.

 The stack contains the ROOT word.

The arc-standard algorithm

UPPSALA

owversirer POSSible transitions

* shift (sh): push
the next word in the buffer onto the stack

* left-arc (la): add an arc

from the topmost word on the stack, si,

to the second-topmost word, s, and pop s2

* right-arc (ra): add an arc
from the second-topmost word on the stack, s,
to the topmost word, s|, and pop s

The arc-standard algorithm

UPPSALA

avesrer Configurations and transitions

Initial configuration: ([],[O0,...,n],[])

Terminal configuration: ([i],[],A)

shift (sh):
(0:[iIB1.A) = ([ali].B.A)

left-arc (la):
([o]i]i].B.,A) = ([0]j].B,Au{jLi})

right-arc (ra):
([oili.B.,A) = ([O1i].B.,AULj})

The arc-standard algorithm

UPPSALA

owversrer— EXample run

booked from LA

booked from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

booked flight from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

booked

booked

from LA

from LA

UPPSALA
UNIVERSITET

The arc-standard algorithm

Example run

booked

booked

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer— EXample run

booked from LA

booked from LA

The arc-standard algorithm

UPPSALA

overster EXample run

e

booked flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

booked from LA

P

booked from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack

P

booked flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

booked from LA

P

booked from LA

The arc-standard algorithm

UPPSALA

overster EXample run

=D

P

booked flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

Buffer

booked from LA

P

booked from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Buffer

! flight from LA

P

booked flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

Buffer

booked i from LA

' o ' o

booked flight from LA

The arc-standard algorithm

UPPSALA

overster EXample run

v o ' o

booked flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

booked i from LA

' o ' o

booked flight from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack

v o ' o

booked flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

booked

e

booked a flight from LA

The arc-standard algorithm

UPPSALA

overster EXample run

e

booked a flight from LA

The arc-standard algorithm

UPPSALA

wviser EXample run

booked

subj det pmod
T
I

booked a flight from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack

subj det pmod
T
I

booked flight from LA

Transition-based dependency parsing

UPPSALA

svesrer Complexity and optimality

Time complexity is linear, O(n), since we only have to
treat each word once

This can be achieved since the algorithm is greedy, and
only builds one tree, in contrast to Eisner’s algorithm,
where all trees are explored

There is no guarantee that we will even find the best tree
given the model, the arc-standard model.

There is a risk of error propagation

An advantage is that we can use very informative
features, for the ML algorithm

UPPSALA
UNIVERSITET

Training a guide

Transition-based dependency parsing

UPPSALA -
UNIVERSITET Guides

* We need a guide that tells us what the next
transition should be.

* The task of the guide can be understood as
classification: Predict the next transition (class),
given the current configuration.

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

We let the parser run on gold-standard trees.

Every time there is a choice to make, we simply
look into the tree and do ‘the right thing’ ™.

We collect all (configuration, transition) pairs
and train a classifier on them.

When parsing unseen sentences,
we use the trained classifier as a guide.

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* The number of (configuration, transition) pairs
is far too large.

We define a set of features of configurations
that we consider to be relevant
for the task of predicting the next transition.

Example: word forms of the topmost two words
on the stack and the next two words in the buffer

* We can then describe every configuration

in terms of a feature vector.

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

configurations in which
we want to do la AN

N
(O]
o
-}
)
«
Q
| .
Q
(O]
o
o)
O
(7]

. configurations in which
we want to do ra

score for feature |

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

classification function
learned by the classifier

N
(O]
o
-}
)
«
Q
| .
Q
(O]
o
o)
O
(7]

score for feature |

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* In practical systems, we have thousands of
features and hundreds of transitions.

There are several machine-learning paradigms
that can be used to train a guide for such a task.

Examples: perceptron, decision trees,

support-vector machines, memory-based learning, neural
networks

Transition-based dependency parsing

UPPSALA

wvester EXample features

Attributes

Adress

LEMMA

POS

FEATS

DEPREL

Stack[0]

X

X

X

Stack[1]

X

Ldep(Stack[0])

Rdep(Stack[0])

Buffer[0]

Buffer[1]

* Combinations of addresses and attributes (e.g. those

marked in the table)

e Other features, such as distances, number of children, ...

UPPSALA
UNIVERSITET

Alternative transition models

UPPSALA
UNIVERSITET

Alternative transition models

Alternatives

* The arc-standard model as | presented it, is just
one example of a transition model

* In the book you can see another version of
the arc-standard model, where arcs are
added between the topmost word on the

stack and the topmost word on the buffer

* There are many other alternatives

Alternative transition models

UPPSALA

wvesmer Arc-eager model

* Contains four transitions:
 Shift
* Reduce
e Left-arc
* Right-arc

* Advantage: not strictly bottom-up, can create arcs
earlier than in the arc-standard model

Alternative transition models

UPPSALA

st INOn-projective transition model

* Allows non-projective parsing by adding a swap
transition

* Contains four transitions:
 Shift
* Swap
e Left-arc
* Right-arc

* Runtime is O(n?) in the worst case (but usually less in
practice)

Alternative transition models

UPPSALA

swersrer— 1ransition models in Maltparser

* Nivre family

* Arcs created between stack and buffer

* arc-eager model

* arc-standard (variant from course book)

* Stack family

* Arcs between two topmost words on stack
* arc-standard model (variant from slides)

* models with swap transition

e Other families available as well

UPPSALA

awveser Other alternatives

* Parsing with beam search

* Instead of just keeping the |-best tree,
keep a beam of the k-best trees in each step

* Requires scoring and ranking of transition
sequences

* Complexity: O(nk)

UPPSALA
UNIVERSITET

Projectivity

UPPSALA

UNIVERSITET PrOj eCtiVity

* A dependency tree is projective if:

* For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that

i = * k for every k such that min(i,) < k <

max(i, j))

UPPSALA

swesiter Projective and non-projective trees

PRED

OB]J

PN A I

ROOT Economic news had little effect on financial markets

PC
ATT

Y

ROOT A hearing S scheduled on the issue today

UPPSALA

sversrer Projectivity and dependency parsing

* Many dependency parsing algorithms can only
handle projective trees

* Including all algorithms we have discussed in
detail

* Non-projective trees do occur in natural
language

* How often depends on language (and
treebank)

UPPSALA

st INon-projective dependency parsing

* Variants of transition-based parsing
* Using a swap-transition
* Using more than one stack (Covington)
* Graph-based parsing
* Minimum spanning tree algorithms

* Post processing

* Pseudo-projective parsing (seminar 2)

* Approximate non-projective parsing

UPPSALA

oaversrer QUMIMAry

* |n transition-based dependency parsing
one does not score graphs but computations,
sequences of (configuration, transition) pairs.

* In its simplest form, transition-based dependency
parsing uses classification.

* One specific instance of transition-based
dependency parsing is the arc-standard algorithm.

UPPSALA

awveser 1 he end of the course

Seminar 2, Pseudo-projective parsing

e Easier and shorter article than last seminar,
some more general questions

Assignment 3: Disambiguation in arc-factored and
transition-based parsing

Assignment 4: Use and evaluate MaltParser
Supervision on demand, mainly by email

Course evaluation in the student portal

