
The CKY algorithm part 2:
Probabilistic parsing

Syntactic analysis (5LN455)

2016-11-14

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

Recap: The CKY algorithm

The CKY algorithm

The CKY algorithm is an efficient bottom–up
parsing algorithm for context-free grammars.

We use it to solve the following tasks:

• Recognition:
Is there any parse tree at all?

• Probabilistic parsing:
What is the most probable parse tree?

Restrictions

• The CKY algorithm as we present it here can
only handle rules that are at most binary:
C → wi , C → C1 C2 , (C → C1)

• This restriction is not a problem theoretically,
but requires preprocessing (binarization) and
postprocessing (debinarization).

• A parsing algorithm that does away with this
restriction is Earley’s algorithm (J&M 13.4.2).

Fencepost positions

We view the sequence w as a fence with n holes,
one hole for each token wi ,
and we number the fenceposts from 0 till n.

0 1 2 3 4 5

m
or
ni
ng

fli
gh
t

I

w
an
t

a

Implementation

• The implementation uses a three-dimensional
array chart.

• Whenever we have recognized a parse tree
that spans all words between min and max
and whose root node is labeled with C,
we set the entry chart[min][max][C] to true.

Implementation: Binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 for each binary rule C -> C1 C2

 for each mid from min + 1 to max - 1

 if chart[min][mid][C1] and chart[mid][max][C2] then

 chart[min][max][C] = true

Question

How do we need to extend the code in order to
handle unary rules C → C1 ?

Unary rules

for each max from 1 to n

 for each min from max - 1 down to 0

 // First, try all binary rules as before.

 ...

 // Then, try all unary rules.

 for each syntactic category C

 for each unary rule C -> C1

 if chart[min][max][C1] then

 chart[min][max][C] = true

new bounds!

Question

This is not quite right.
Why, and how could we fix the problem?

Implementation

Structure

• Is there any parse tree at all?

• What is the most probable parse tree?

Probabilistic parsing

What is the most probable parse tree?

• The number of possible parse trees
grows rapidly with the length of the input.

• But not all parse trees are equally useful.

Example: I booked a flight from Los Angeles.

• In many applications, we want the ‘best’
parse tree, or the first few best trees.

• Special case: ‘best’ = ‘most probable’

Probabilistic parsing

Probabilistic context-free grammars

A probabilistic context-free grammar (PCFG)
is a context-free grammar where

• each rule r has been assigned a probability
p(r) between 0 and 1

• the probabilities of rules with the same
left-hand side sum up to 1

Probabilistic parsing

Example

Rule Probability

S → NP VP 1

NP → Pronoun 1/3

NP → Proper-Noun 1/3

NP → Det Nominal 1/3

Nominal → Nominal PP 1/3

Nominal → Noun 2/3

VP → Verb NP 8/9

VP → Verb NP PP 1/9

PP → Preposition NP 1

Probabilistic parsing

Made up probabilities!

The probability of a parse tree

The probability of a parse tree is defined as
the product of the probabilities of the rules
that have been used to build the parse tree.

Probabilistic parsing

Example

1/1

1/3 8/9

1/3

1/3

Probability: 16/729

booked

a

flight

Nom PP

NomDet

NPVerb

I

Pro

VPNP

S

from LANoun

2/3

Probabilistic parsing

Example

1/1

1/3 1/9

1/3

Probability: 6/729

booked

a

NomDet

NP PPVerb

I

Pro

VPNP

S

from LA

flight

Noun

2/3

Probabilistic parsing

Small trees

C

wi

Probabilistic parsing

Small trees

wi

Probabilistic parsing

Small trees

C → wi

wi

Probabilistic parsing

Choose the most probable rule!

Small trees

C

covers all words
between min and max

Probabilistic parsing

Big trees

C

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

Probabilistic parsing

Big trees

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

Probabilistic parsing

Big trees

C → C1 C2

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

Probabilistic parsing

Choose the most probable rule!

Idea

• For trees built using preterminal rules:
Find a most probable rule.

• For trees built using binary rules:
Find a binary rule r and a split point mid such that
p(r) × p(t1) × p(t2) is maximal, where
t1 is a most probable left subtree and
t2 is a most probable right subtree.

Probabilistic parsing

Implementation

• Instead of an array with Boolean values, we now
have an array with probabilities, i.e., doubles.

• When all is done, we want to have
chart[min][max][C] = p
if and only if a most probable parse tree with
signature [min, max, C] has probability p.

Probabilistic parsing

Preterminal rules

for each wi from left to right

 for each preterminal rule C -> wi

 chart[i - 1][i][C] = p(C -> wi)

Probabilistic parsing

Binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 double best = undefined

 for each binary rule C -> C1 C2

 for each mid from min + 1 to max - 1

 double t1 = chart[min][mid][C1]

 double t2 = chart[mid][max][C2]

 double candidate = t1 * t2 * p(C -> C1 C2)

 if candidate > best then

 best = candidate

 chart[min][max][C] = best

Probabilistic parsing

Question

How should we treat unary rules?

Probabilistic parsing

One more question

The only thing that we have done so far is to
compute the probability of the most probable parse
tree. But how does that parse tree look like?

Probabilistic parsing

Backpointers

• When we find a new best parse tree,
we want to remember how we built it.

• For each element t = chart[min][max][C],
we also store backpointers to those elements
from which t was built.

Probabilistic parsing

Backpointers

double best = undefined

Backpointer backpointer = undefined

...

if candidate > best then

 best = candidate

 // We found a better tree; update the backpointer!

 backpointer = (C -> C1 C2, min, mid, max)

...

chart[min][max][C] = best

backpointerChart[min][max][C] = backpointer

Probabilistic parsing

Implementation ideas

defaultdict is a suitable datastructure for charts!

 pi = defaultdict(float)

 bp = defaultdict(tuple)

Recognize all parse trees built with with preterminal rules.

Recognize all parse trees built with binary rules.

”S” is not always the top category, the below is a simplification

return backtrace(bp[0, n, "S"], bp);

Implementation

Advanced models

• The CKY model is used in many competitive
parsers

• To improve performance the grammar is often
modified, e.g. by

• Parent annotation (literature seminar 1)

• Lexicalised rules

Probabilistic parsing

Summary

• The CKY algorithm is an efficient parsing
algorithm for context-free grammars.

• Today, we have used it for probabilistic parsing:
The task of computing the most probable
parse tree for a given sentence.

Own work

• Reading:

• CKY: J&M 14.1, 14.2

• Treebanks: J&M12.4, 14.3, 14.7

• Work on assignments

• Start working on assignment 2: CKY

• Contact me if you need help

• You can also ask questions in the lectures

Deadlines

• Ordinary deadlines

• Assignment 1+2: 16-12-06

• Assignment 3+4: 17-01-13

• Resubmission deadline

• All assignments: 17-02-03

• (assignment 1+2 also at the 2nd deadline: 17-01-13)

• If you fail to meet these deadlines you will have to wait for the next
time the course is given

• Assignments will only be graded in connection with each deadline

• In case of special circumstances, contact me before the deadline it
concerns!

