UPPSALA
UNIVERSITET

The CKY algorithm part I:
Recognition

Syntactic analysis (5LN455)
2016-11-10

Sara Stymne
Department of Linguistics and Philology

Mostly based on slides from Marco Kuhimann




UPPSALA

UNIVERSITET Phrase structure trees

root (top)

leaves (bottom)

morning




UPPSALA

UNIVERSITET Am bigu ity

S

/\

NP VP

| T

NP

| /\

booked

/\

PP

P




UPPSALA

UNIVERSITET Am bigu ity

/\

NP VP

| _—— T

NP PP

booked Det Nom from LA

a




UPPSALA

sviser Parsing as search

* Parsing as search:
search through all possible parse trees
for a given sentence

* bottom-—up:
build parse trees starting at the leaves

* top—down:

build parse trees starting at the root node
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* The CKY algorithm is an efficient bottom-up
parsing algorithm for context-free grammars.

* It was discovered at least three (!) times
and named after Cocke, Kasami, and Younger.

* It is one of the most important and most used
parsing algorithms.
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The CKY algorithm can be used to compute
many interesting things.

Here we use it to solve the following tasks:
* Recognition:

Is there any parse tree at all?
* Probabilistic parsing:

What is the most probable parse tree?
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The original CKY algorithm can only handle rules that
are at most binary:

C—'Wi,C—’CICZ.

It can easily be extended to also handle unit productions:
C-ow, C-oC, C-C (.

This restriction is not a problem theoretically,
but requires preprocessing (binarization) and

bostprocessing (debinarization).

A parsing algorithm that does away with this restriction
is Earley’s algorithm (Lecture 5 and |&M [3.4.2).
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The CKY algorithm originally handles grammars in
CNF (Chomsky normal form):
C-ow, C-C(C,S~—¢)

€ is normally not used in natural language grammars
This is what you will use in assignment 2
We will also discuss allowing unit productions, C — C;

e Extended CNF

* Easy to integrate into CKY easier grammar
conversions
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 Eliminate mixed rules:

* VP->V toVP --VP->V INFVP INF->to

* Elimainate n-ary branching subtrees, with n>2, by
inserting additional nodes

* VP->V INFVP --VP->V XI, XI->INFV

* Eliminate unary branching by merging nodes

* S-> NPVP, NP->PRON, PRON->you -- NP->you




awverser Conversion to CNF

 Eliminate mixed rules:
e VP->V toVP --VP->V INFVP INF->to

* Eliminate n-ary branching subtrees, with n>2, by inserting
additional nodes

* VP->V INFVP --VP->V XI, XI|->INFV
with markovization VP->VVP|V, VP|V->INF VP
* Eliminate unary branching by merging nodes
* S-> NPVP NP->PRON, PRON->you -- NP->you
with markovization NP->NP+PRONYVPF, NP+PRON->you
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WVe are given a context-free grammar G

and a sequence of word tokens w =w/ ... wy.

We want to compute parse trees of w
according to the rules of G.

We write S for the start symbol of G.
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We view the sequence w as a fence with n holes,
one hole for each token w;,
and we number the fenceposts from O till n.

AN AN ANANANA
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* |s there any parse tree at all?
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Recognizer

A computer program that can answer the question

Is there any parse tree at all
for the sequence w according to the grammar G!?

is called a recognizer.

In practical applications one also wants
a concrete parse tree, not only an answer
to the question whether such a parse tree exists.
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* preterminal rules:
rules that rewrite a part-of-speech tag
to a token, i.e. rules of the form C — w;

Pro — |, Verb - booked, Noun — flight

inner rules:
rules that rewrite a syntactic category to other

categories: C = C; C;, (C — C))
S = NP VP, NP —» Det Nom, (NP — Pro)
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covers all words
betweeni— | and i
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covers all words
between min and max
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* How do we know that we have recognized
that the input sequence is grammatical?

* How do we need to extend this reasoning
in the presence of unary rules: C = C; !
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The rules that we have just seen are independent
of a parse tree’s inner structure.

The only thing that is important is
how the parse tree looks from the ‘outside’.

We call this the signature of the parse tree.

A parse tree with signature [min, max, C] is one
that covers all words between min and max
and whose root node is labeled with C.
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* What is the signature of a parse tree
for the complete sentence!

* How many different signatures are there!

* Can you relate the runtime of the parsing
algorithm to the number of signatures!?
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* The standard implementation represents

signatures by means of a three-dimensional array

chart.

Initially, all entries of chart should be set to false.

Whenever we have recognized a parse tree
that spans all words between min and max
and whose root node is labeled with C,

we set the entry chart[min][max][C] to true.
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for each wi from left to right
for each preterminal rule C -> w;

chart[i - 1][1][C] = true
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for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
for each binary rule C -> Ci; C:
for each mid from min + 1 to max - 1
if chart[min][mid][Ci] and chart[mid][max][C2] then

chart[min][max][C] true
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* |n order to use standard arrays, we need to
represent syntactic categories by humbers.

* We write m for the number of categories;
we number them from O till m — 1.

* We choose our numbers such that the start
symbol $ gets the number O.
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CKY in python

* A three-dimensional array might not be the most
suitable choice in python.

* |t is quite possible to use more python-lika data
structures like dictionaries, or variants such as
defaultdict

* Use tuples as keys, e.g. (i,3,s); e€x: (2,3, "pron")
* Lookup in chart: chart([i,3j,s]

* No need to numberize categories in this solution
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* In what way is this algorithm bottom—up!?
* Why is that property of the algorithm important?

* How do we need to extend the code if we wish
to handle unary rules C = C;?

* Why would we want to do that!?
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The CKY algorithm is an efficient parsing
algorithm for context-free grammars.

Today: Recognizing whether there is
any parse tree at all.

Next time: Probabilistic parsing —
computing the most probable parse tree.
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* Recap of the introductory lecture:
J&M chapter 12.1-12.7 and 13.1-13.3

* CKY recognition:
J&M section |3.4.1

* CKY probabilistic parsing, for next week:
J&M section 14.1-14.2




