UPPSALA
UNIVERSITET

The CKY algorithm part I:
Recognition

Syntactic analysis (5LN455)
2016-11-10

Sara Stymne
Department of Linguistics and Philology

Mostly based on slides from Marco Kuhimann

UPPSALA

UNIVERSITET Phrase structure trees

root (top)

leaves (bottom)

morning

UPPSALA

UNIVERSITET Am bigu ity

S

/\

NP VP

| T

NP

| /\

booked

/\

PP

P

UPPSALA

UNIVERSITET Am bigu ity

/\

NP VP

| _—— T

NP PP

booked Det Nom from LA

a

UPPSALA

sviser Parsing as search

* Parsing as search:
search through all possible parse trees
for a given sentence

* bottom-—up:
build parse trees starting at the leaves

* top—down:

build parse trees starting at the root node

UPPSALA

wvesrer Overview of the CKY algorithm

* The CKY algorithm is an efficient bottom-up
parsing algorithm for context-free grammars.

* It was discovered at least three (!) times
and named after Cocke, Kasami, and Younger.

* It is one of the most important and most used
parsing algorithms.

UPPSALA

UNIVERSITET APPIicationS

The CKY algorithm can be used to compute
many interesting things.

Here we use it to solve the following tasks:
* Recognition:

Is there any parse tree at all?
* Probabilistic parsing:

What is the most probable parse tree?

UPPSALA

owverser Restrictions

The original CKY algorithm can only handle rules that
are at most binary:

C—'Wi,C—’CICZ.

It can easily be extended to also handle unit productions:
C-ow, C-oC, C-C (.

This restriction is not a problem theoretically,
but requires preprocessing (binarization) and

bostprocessing (debinarization).

A parsing algorithm that does away with this restriction
is Earley’s algorithm (Lecture 5 and |&M [3.4.2).

UPPSALA

oversirer Restrictions - details

The CKY algorithm originally handles grammars in
CNF (Chomsky normal form):
C-ow, C-C(C,S~—¢)

€ is normally not used in natural language grammars
This is what you will use in assignment 2
We will also discuss allowing unit productions, C — C;

e Extended CNF

* Easy to integrate into CKY easier grammar
conversions

awverser Conversion to CNF

 Eliminate mixed rules:

* VP->V toVP --VP->V INFVP INF->to

* Elimainate n-ary branching subtrees, with n>2, by
inserting additional nodes

* VP->V INFVP --VP->V XI, XI->INFV

* Eliminate unary branching by merging nodes

* S-> NPVP, NP->PRON, PRON->you -- NP->you

awverser Conversion to CNF

 Eliminate mixed rules:
e VP->V toVP --VP->V INFVP INF->to

* Eliminate n-ary branching subtrees, with n>2, by inserting
additional nodes

* VP->V INFVP --VP->V XI, XI|->INFV
with markovization VP->VVP|V, VP|V->INF VP
* Eliminate unary branching by merging nodes
* S-> NPVP NP->PRON, PRON->you -- NP->you
with markovization NP->NP+PRONYVPF, NP+PRON->you

UPPSALA

swverser Conventions

WVe are given a context-free grammar G

and a sequence of word tokens w =w/ ... wy.

We want to compute parse trees of w
according to the rules of G.

We write S for the start symbol of G.

UPPSALA
UNIVERSITET

Fencepost positions

We view the sequence w as a fence with n holes,
one hole for each token w;,
and we number the fenceposts from O till n.

AN AN ANANANA

UPPSALA

UNIVERSITET Stru Ctu re

* |s there any parse tree at all?

UPPSALA
UNIVERSITET

Recognition

UPPSALA
UNIVERSITET

Recognition

Recognizer

A computer program that can answer the question

Is there any parse tree at all
for the sequence w according to the grammar G!?

is called a recognizer.

In practical applications one also wants
a concrete parse tree, not only an answer
to the question whether such a parse tree exists.

Recognition

UPPSALA

overser Parse trees

S

/\

NP VP

| T

NP

| /\

booked

/\

PP

P

Recognition

UPPSALA

owversirer Preterminal rules and inner rules

* preterminal rules:
rules that rewrite a part-of-speech tag
to a token, i.e. rules of the form C — w;

Pro — |, Verb - booked, Noun — flight

inner rules:
rules that rewrite a syntactic category to other

categories: C = C; C;, (C — C))
S = NP VP, NP —» Det Nom, (NP — Pro)

Recognition

UPPSALA

st Recognizing small trees

Recognition

UPPSALA

st Recognizing small trees

Recognition

UPPSALA

st Recognizing small trees

Recognition

UPPSALA

swversrer - Recognizing small trees

covers all words
betweeni— | and i

Recognition

UPPSALA

wwvirser - Recognizing big trees

Recognition

UPPSALA

wwvirser - Recognizing big trees

Recognition

UPPSALA

wwvirser - Recognizing big trees

Recognition

UPPSALA

sversrer Recognizing big trees

covers all words
between min and max

Recognition

UPPSALA

aveser QuUestions

* How do we know that we have recognized
that the input sequence is grammatical?

* How do we need to extend this reasoning
in the presence of unary rules: C = C; !

Recognition

UPPSALA

UNIVERSITET Signatu res

The rules that we have just seen are independent
of a parse tree’s inner structure.

The only thing that is important is
how the parse tree looks from the ‘outside’.

We call this the signature of the parse tree.

A parse tree with signature [min, max, C] is one
that covers all words between min and max
and whose root node is labeled with C.

Recognition

UPPSALA

aveser QuUestions

* What is the signature of a parse tree
for the complete sentence!

* How many different signatures are there!

* Can you relate the runtime of the parsing
algorithm to the number of signatures!?

UPPSALA
UNIVERSITET

Implementation

Implementation

UPPSALA

overser | Data structure

* The standard implementation represents

signatures by means of a three-dimensional array

chart.

Initially, all entries of chart should be set to false.

Whenever we have recognized a parse tree
that spans all words between min and max
and whose root node is labeled with C,

we set the entry chart[min][max][C] to true.

Implementation

UPPSALA

owverser Preterminal rules

for each wi from left to right
for each preterminal rule C -> w;

chart[i - 1][1][C] = true

Implementation

UPPSALA

swveser Binary rules

for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
for each binary rule C -> Ci; C:
for each mid from min + 1 to max - 1
if chart[min][mid][Ci] and chart[mid][max][C2] then

chart[min][max][C] true

Implementation

UPPSALA

sveser Numbering of categories

* |n order to use standard arrays, we need to
represent syntactic categories by humbers.

* We write m for the number of categories;
we number them from O till m — 1.

* We choose our numbers such that the start
symbol $ gets the number O.

UPPSALA
UNIVERSITET

Implementation

CKY in python

* A three-dimensional array might not be the most
suitable choice in python.

* |t is quite possible to use more python-lika data
structures like dictionaries, or variants such as
defaultdict

* Use tuples as keys, e.g. (i,3,s); e€x: (2,3, "pron")
* Lookup in chart: chart([i,3j,s]

* No need to numberize categories in this solution

Implementation

UPPSALA

aveser QuUestions

* In what way is this algorithm bottom—up!?
* Why is that property of the algorithm important?

* How do we need to extend the code if we wish
to handle unary rules C = C;?

* Why would we want to do that!?

UPPSALA

oaversrer QUMIMAry

The CKY algorithm is an efficient parsing
algorithm for context-free grammars.

Today: Recognizing whether there is
any parse tree at all.

Next time: Probabilistic parsing —
computing the most probable parse tree.

UPPSALA

UNIVERSITET Read i ng

* Recap of the introductory lecture:
J&M chapter 12.1-12.7 and 13.1-13.3

* CKY recognition:
J&M section |3.4.1

* CKY probabilistic parsing, for next week:
J&M section 14.1-14.2

