
Collins’ and Eisner’s algorithms

Syntactic analysis (5LN455)

2014-12-15

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

Recap: Dependency trees

• In an arc h → d, the word h is called the head,
and the word d is called the dependent.

• The arcs form a rooted tree.

booked a flightI from LA

subj

dobj

det pmod

Recap: Scoring models and parsing
algorithms

Distinguish two aspects:

• Scoring model:
How do we want to score dependency trees?

• Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?

Recap: The arc-factored model

• To score a dependency tree, score the individual
arcs, and combine the score into a simple sum.

score(t) = score(a1) + … + score(an)

• Define the score of an arc h → d as
the weighted sum of all features of that arc:

score(h → d) = f1w1 + … + fnwn

Recap: Example features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb
and the dependent is a noun.’

• ‘The head is a verb
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

• ‘The arc has length 2.’

Training using structured prediction

• Take a sentence w and a gold-standard
dependency tree g for w.

• Compute the highest-scoring dependency tree
under the current weights; call it p.

• Increase the weights of all features
that are in g but not in p.

• Decrease the weights of all features
that are in p but not in g.

Arc-factored dependency parsing

Collin’s algorithm

• Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

• It can be understood as an extension
of the CKY algorithm to dependency parsing.

• Like the CKY algorithm, it can be characterized
as a bottom-up algorithm
based on dynamic programming.

Signatures

[min, max, root]

root

min max

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA][1, 2, booked][0, 1, I] [2, 3, a]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 5, flight]

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

score(t) = score(t1) + score(t2) + score(l → r)

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

for each [min, max] with max - min > 1 do

 for each l from min to max - 2 do

 double best = score[min][max][l]

 for each r from l + 1 to max - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(l ! r)

 if current > best then

 best = current

 score[min][max][l] = best

Collins’ algorithm

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 1, I] [1, 2, booked]

pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 1, I] [1, 2, booked]

subj pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 2, booked]

subj pmod

Adding a right-to-left arc

Collins’ algorithm

Adding a right-to-left arc

Collins’ algorithm

r

max

t2

l

min mid

t1

Adding a right-to-left arc

Collins’ algorithm

r

max

t2

l

min mid

t1

Adding a right-to-left arc

Collins’ algorithm

r

min max

t

Adding a right-to-left arc

Collins’ algorithm

score(t) = score(t1) + score(t2) + score(r → l)

r

min max

t

Adding a right-to-left arc

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r ! l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmod

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmod

[3, 5, flight][2, 3, a]

det

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

[2, 5, flight]

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

[2, 5, flight][0, 2, booked]

dobj

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

dobj

[0, 5, booked]

Complexity analysis

• Space requirement:
O(|w|3)

• Runtime requirement:
O(|w|5)

Collins’ algorithm

Extension to the labeled case

• It is important to distinguish dependencies
of different types between the same two words.

Example: subj, dobj

• For this reason, practical systems typically
deal with labeled arcs.

• The question then arises how to extend
Collins’ algorithm to the labeled case.

Collins’ algorithm

Naive approach

• Add an innermost loop that iterates over all
edge labels in order to find the combination
that maximizes the overall score.

• For each step of the original algorithm,
we now need to make |L| steps,
where L is the set of all labels.

Collins’ algorithm

Smart approach

• Before parsing, compute a table that lists,
for each head–dependent pair (h, d),
the label that maximizes the score of arcs h → d.

• During parsing, simply look up the best label
in the precomputed table.

• This adds (not multiplies!) a factor of |L||w|2
to the overall runtime of the algorithm.

Collins’ algorithm

Summary

• Collins’ algorithm is a CKY-style algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

• It runs in time O(|w|5).
This may not be practical for long sentences.

Collins’ algorithm

Eisner’s algorithm

Eisner’s algorithm

• With its runtime of O(|w|5), Collins’ algorithm
may not be of much use in practice.

• With Eisner’s algorithm we will be able to solve
the same problem in O(|w|3).

• Intuition: collect left and right dependents
independently

Basic idea

In Collins’ algorithm, adding a left-to-right arc
is done in one single step, specified by 5 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min max

Eisner’s algorithm

In Collins’ algorithm, adding a left-to-right arc
is done in one single step, specified by 5 positions.

Basic idea

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min mid

r

max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

ComparisonComparison

Eisner’s algorithmEisner’s algorithm

Dynamic programming tables

• Collins’:

• [min,max,head]

• Eisner’s

• [min,max,head-side,complete]

• head-side, binary: is head to the left or
right?

• complete, binary: is the non-head side still
looking for dependents?

Eisner’s algorithm

Pseudo code

for each i from 0 to n and all d,c do

C[i][i][d][c] = 0.0

for each m from 1 to n do

 for each i from 0 to n-m do

 j = i+m

 C[i][j][⟵][1] = maxi≤q<j(C[i][q][→][0] + C[q+1][j][⟵][0]+score(wj,wi)

C[i][j][→][1] = maxi≤q<j(C[i][q][→][0] + C[q+1][j][⟵][0]+score(wi,wj)

C[i][j][⟵][0] = maxi≤q<j(C[i][q][⟵][1] + C[q][j][⟵][0])

C[i][j][→][0] = maxi≤q<j(C[i][q][→][0] + C[q][j][→][1])

return [0][n][→][0]

Eisner’s algorithm

Summary

• Eisner’s algorithm is an improvement over
Collin’s algorithm that runs in time O(|w|3).

• The same scoring model can be used.

• The same technique for extending the parser to
labeled parsing can be used.

• Eisner’s algorithm is the basis of current
arc-factored dependency parsers.

Eisner’s algorithm

