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owvirser Mid-course evaluation

* Mostly positive
* Good lectures and slides
* Good with small exercises during lectures
* Good assighments
* Main negative points:
* AirinTuring
* Parallel with semantic analysi

* Final evaluation at end of course, student portal
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Overview

Dependency parsing in general
Arc-factored dependency parsing

* Collins’ algorithm

* Eisner’s algorithm
Transition-based dependency parsing

* The arc-standard algorithm

Evaluation of dependency parsers
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* The term ‘dependency grammar’
does not refer to a specific grammar formalism.

* Rather, it refers to a specific way
to describe the syntactic structure of a sentence.
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svesmer 1 he notion of dependency

* The basic observation behind constituency
is that groups of words may act as one unit.

Example: noun phrase, prepositional phrase

* The basic observation behind dependency
is that words have grammatical functions
with respect to other words in the sentence.

Example: subject, modifier
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dobj
subj det pmod
vy Wy
I booked a flight from LA

* Inanarc h — d, the word h is called the head,

and the word d is called the dependent.

e The arcs form a rooted tree.
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* In phrase structure grammar,
ideas from dependency grammar
can be found in the notion of heads.

* Roughly speaking, the head of a phrase
is the most important word of the phrase:
the word that determines the phrase function.

Examples: noun in a noun phrase,
preposition In a prepositional phrase
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* The notion of dependency
can be found in some of
the earliest formal grammars.

* Modern dependency grammar
is attributed to
Lucien Tesniere (1893—1954).

* Recent years have seen
a revived interest in dependency-based
description of natural language syntax.
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* Descriptive dependency grammars exist
for some natural languages.

* Dependency treebanks exist
for a wide range of natural languages.

* These treebanks can be used to train
accurate and efficient dependency parsers.
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* An important characteristic of dependency trees
IS projectivity

* A dependency tree is projective if:

* For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that
i = * k for every k such that min(i, ) < k <

max(i, j))
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* Many dependency parsing algorithms can only
handle projective trees

* Non-projective trees do occur in natural

language

* How often depends on the language (and
treebank)
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* The algorithms we will discuss in detail during the
lectures will only concern projective parsing

* Non-projective parsing:
* Seminar 2: Pseudo-projective parsing

* Other variants mentioned briefly during the
lectures

* You can read more about it in the course
book!
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Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.
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Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.
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* We need to disambiguate between
alternative analyses.

* We develop mechanisms for scoring dependency
trees, and disambiguate by choosing
a dependency tree with the highest score.
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Distinguish two aspects:

* Scoring model:

How do we want to score dependency trees?

* Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?
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* Split the dependency tree t into parts py, ..., bn,
score each of the parts individually,
and combine the score into a simple sum.

score(t) = score(pi) + ... + score(pn)

* The simplest scoring model is
the arc-factored model, where
the scored parts are the arcs of the tree.
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dob;j

booked flight

 To score an arc, we define features that are
likely to be relevant in the context of parsing.

* We represent an arc by its feature vector.
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* ‘The head is a verb.
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* ‘The dependent is a noun.
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and the dependent is a noun.
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* ‘The head is a verb.

* ‘The dependent is a noun.

* ‘The head is a verb
and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.
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* ‘The head is a verb.
* ‘The dependent is a noun.

e ‘The head is a verb

and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.

* ‘The arc goes from left to right.
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* ‘The head is a verb.
* ‘The dependent is a noun.

* ‘The head is a verb
and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.

* ‘The arc goes from left to right.

* ‘The arc has length 2!
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Feature: “The dependent is a noun!

0 Feature: ‘The head is a verb.
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svirser Feature vectors

Feature: “The dependent is a noun!

booked — flight

flight — from LA

flight — a booked — |

Feature: ‘The head is a verb.
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* We assign each feature a unique number.

* For each arc, we collect the numbers
of those features that apply to that arc.

e The feature vector of the arc
is the list of those numbers.

Example: [1,2,42,313,1977,2008,2010]
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* Arc-factored dependency parsers
require a training phase.

* During training, our goal is to assign,
to each feature f, a feature weight w..

* Intuitively, the weight w; quantifies the effect
of the feature f; on the likelihood of the arc.

How likely is is that we will see
an arc with this feature in a useful dependency tree’
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We define the score of anarc h = d as
the weighted sum of all features of that arc:

score(h = d) = fiw; + ... + fawy
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* Take a sentence w and a gold-standard
dependency tree g for w.

* Compute the highest-scoring dependency tree
under the current weights; call it p.

* Increase the weights of all features
that are in g but not in p.

* Decrease the weights of all features
that are in p but not in g.
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* Training involves repeatedly parsing (treebank)
sentences and refining the weights.

* Hence, training presupposes an efficient parsing
algorithm.
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e The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

* An nth-order model scores subgraphs consisting of (at
most) n arcs.

* Second-order: siblings, grand-parents

* Third-order: tri-siblings, grand-siblings

* Higher-order models capture more linguistic structure
and give higher parsing accuracy, but less efficient



Arc-factored dependency parsing

UPPSALA

owversrer—— Parsing algorithms

* Projective parsing
* Inspired by the CKY algorithm
* Collins’ algorithm
* Eisner’s algorithm
* Non-projective parsing:

* Minimum spanning tree (MST) algorithms
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* Arc-factored parsing is an instance of graph-based
dependency parsing

* Because it scores the dependency graph (tree)

* Graph-based models are often contrasted with
transition-based models (next week)

* There are also grammar-based methods, which
we will not discuss
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* The term ‘arc-factored dependency parsing’
refers to dependency parsers that
score a dependency tree by scoring its arcs.

* Arcs are scored by defining features
and assigning weights to these features.

* The resulting parsers can be trained
using structured prediction.

* More powerful scoring models exist.
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Overview

Arc-factored dependency parsing
Collins’ algorithm
Eisner’s algorithm
Transition-based dependency parsing
The arc-standard algorithm
Dependency treebanks

Evaluation of dependency parsers
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* Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* |t can be understood as an extension
of the CKY algorithm to dependency parsing.

* Like the CKY algorithm, it can be characterized

as a bottom-up algorithm
based on dynamic programming.
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min max

[min, max, C]
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root

min max

[min, max, root]
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I booked a flight from LA

[0, 1,1] [1,2, booked] 2,3, 2] [3, 4, flight] [4, 5, from LA]
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I booked a flight from LA

1
[3, 4, flight] [4, 5, from LA]
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min max
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min max

score(t) = score(t)) + score(tz) + score(l = r)
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for each [min, max] with max - min > 1 do
for each 1 from min to max - 2 do
double best = score[min][max][1l]
for each r from 1 + 1 to max - 1 do
for each mid from 1 + 1 to r do

score[min][mid][1]

t1

to score[mid][max][r]
double current = t; + t2 + score(l » r)

if current > best then

best = current

score[min][max][1] best
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1
[0, 1,1] [1,2, booked]
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Adding a right-to-left arc

subj
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subj pmod

\4 v
I booked a flight from LA

[0, 2, booked]
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min max

score(t) = score(t)) + score(tz) + score(r — )
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for each [min, max] with max - min > 1 do
for each r from min + 1 to max - 1 do
double best = score[min][max][r]
for each 1 from min to r - 1 do
for each mid from 1 + 1 to r do

score[min][mid][1]

t1

to score[mid][max][r]
double current = t; + t2 + score(r » 1)

if current > best then

best = current

score[min][max][r] best
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Finishing up
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Finishing up

subj
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[0, 2, booked]

2, 5, flight]
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Finishing up

subj
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[0, 5, booked]
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* Space requirement:

O(Iwl’)

* Runtime requirement:

O(Iwl*)
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* Collins’ algorithm is a CKY-style algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* It runs in time O(|w]>).
This may not be practical for long sentences.



