UPPSALA
UNIVERSITET

Dependency grammar and
dependency parsing

Syntactic analysis (5LN455)
2014-12-10

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

UPPSALA

owvirser Mid-course evaluation

* Mostly positive
* Good lectures and slides
* Good with small exercises during lectures
* Good assighments
* Main negative points:
* AirinTuring
* Parallel with semantic analysi

* Final evaluation at end of course, student portal

UPPSALA
UNIVERSITET

Overview

Dependency parsing in general
Arc-factored dependency parsing

* Collins’ algorithm

* Eisner’s algorithm
Transition-based dependency parsing

* The arc-standard algorithm

Evaluation of dependency parsers

UPPSALA
UNIVERSITET

Dependency grammar

UPPSALA

owversrer D ependency grammar

* The term ‘dependency grammar’
does not refer to a specific grammar formalism.

* Rather, it refers to a specific way
to describe the syntactic structure of a sentence.

Dependency grammar

UPPSALA

svesmer 1 he notion of dependency

* The basic observation behind constituency
is that groups of words may act as one unit.

Example: noun phrase, prepositional phrase

* The basic observation behind dependency
is that words have grammatical functions
with respect to other words in the sentence.

Example: subject, modifier

Dependency grammar

UPPSALA

swvirser - Phrase structure trees

S

/\
NP VP
| _— T
Pro Verb NP
I booked Det Nom
| /\
a Nom PP
| P
Noun from LA

flight

Dependency grammar

UPPSALA

s Dependency trees

dobj
subj det pmod
vy Wy
I booked a flight from LA

* Inanarc h — d, the word h is called the head,

and the word d is called the dependent.

e The arcs form a rooted tree.

Dependency grammar

UPPSALA

s Fleads in phrase structure grammar

* In phrase structure grammar,
ideas from dependency grammar
can be found in the notion of heads.

* Roughly speaking, the head of a phrase
is the most important word of the phrase:
the word that determines the phrase function.

Examples: noun in a noun phrase,
preposition In a prepositional phrase

Dependency grammar

UPPSALA

s Fleads in phrase structure grammar

/\
NP VP
| _—
Pro Verb NP
I booked Det Nom
| /\
a Nom PP
| T
Noun from LA

flight

Dependency grammar

UPPSALA

svesmer 1 he history of dependency grammar

* The notion of dependency
can be found in some of
the earliest formal grammars.

* Modern dependency grammar
is attributed to
Lucien Tesniere (1893—1954).

* Recent years have seen
a revived interest in dependency-based
description of natural language syntax.

Dependency grammar

UPPSALA

owversrer—— LINGUIStIC resources

* Descriptive dependency grammars exist
for some natural languages.

* Dependency treebanks exist
for a wide range of natural languages.

* These treebanks can be used to train
accurate and efficient dependency parsers.

UPPSALA

oversirer Projectivity

* An important characteristic of dependency trees
IS projectivity

* A dependency tree is projective if:

* For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that
i = * k for every k such that min(i,) < k <

max(i, j))

UPPSALA

swesiter Projective and non-projective trees

PU

PRED
OB}

ROOT Economic news had little effect on financial markets

ATT SBJ

PU

PC

ATT

¥ N\ 2

ROOT A hearing S scheduled on the issue today

UPPSALA

sversrer Projectivity and dependency parsing

* Many dependency parsing algorithms can only
handle projective trees

* Non-projective trees do occur in natural

language

* How often depends on the language (and
treebank)

UPPSALA

wvesmer Projectivity in the course

* The algorithms we will discuss in detail during the
lectures will only concern projective parsing

* Non-projective parsing:
* Seminar 2: Pseudo-projective parsing

* Other variants mentioned briefly during the
lectures

* You can read more about it in the course
book!

UPPSALA
UNIVERSITET

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Am bigu ity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

dobj

Pl TR

booked a flight from LA

UPPSALA

UNIVERSITET Am bigu ity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

pmod

dobj

I TR

booked flight from LA

UPPSALA

UNIVERSITET Disambiguation

* We need to disambiguate between
alternative analyses.

* We develop mechanisms for scoring dependency
trees, and disambiguate by choosing
a dependency tree with the highest score.

UPPSALA

svesmer 9COring models and parsing algorithms

Distinguish two aspects:

* Scoring model:

How do we want to score dependency trees?

* Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?

UPPSALA

wwveser 1 he arc-factored model

* Split the dependency tree t into parts py, ..., bn,
score each of the parts individually,
and combine the score into a simple sum.

score(t) = score(pi) + ... + score(pn)

* The simplest scoring model is
the arc-factored model, where
the scored parts are the arcs of the tree.

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Featu res

dob;j

booked flight

 To score an arc, we define features that are
likely to be relevant in the context of parsing.

* We represent an arc by its feature vector.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.

* ‘The dependent is a noun.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.
* ‘The dependent is a noun.

* ‘The head is a verb
and the dependent is a noun.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.

* ‘The dependent is a noun.

* ‘The head is a verb
and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.
* ‘The dependent is a noun.

e ‘The head is a verb

and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.

* ‘The arc goes from left to right.

Arc-factored dependency parsing

UPPSALA

sveser EXamples of features

* ‘The head is a verb.
* ‘The dependent is a noun.

* ‘The head is a verb
and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.

* ‘The arc goes from left to right.

* ‘The arc has length 2!

Arc-factored dependency parsing

UPPSALA

svirser Feature vectors

Feature: “The dependent is a noun!

0 Feature: ‘The head is a verb.

UPPSALA

Arc-factored dependency parsing

svirser Feature vectors

Feature: “The dependent is a noun!

booked — flight

flight — from LA

flight — a booked — |

Feature: ‘The head is a verb.

Arc-factored dependency parsing

UPPSALA

w~vester |Mplementation of feature vectors

* We assign each feature a unique number.

* For each arc, we collect the numbers
of those features that apply to that arc.

e The feature vector of the arc
is the list of those numbers.

Example: [1,2,42,313,1977,2008,2010]

Arc-factored dependency parsing

UPPSALA

st Feature weights

* Arc-factored dependency parsers
require a training phase.

* During training, our goal is to assign,
to each feature f, a feature weight w..

* Intuitively, the weight w; quantifies the effect
of the feature f; on the likelihood of the arc.

How likely is is that we will see
an arc with this feature in a useful dependency tree’

Arc-factored dependency parsing

UPPSALA

UNIVERSITET Featu re Weights

We define the score of anarc h = d as
the weighted sum of all features of that arc:

score(h = d) = fiw; + ... + fawy

Arc-factored dependency parsing

UPPSALA

swversrer— [raining using structured prediction

* Take a sentence w and a gold-standard
dependency tree g for w.

* Compute the highest-scoring dependency tree
under the current weights; call it p.

* Increase the weights of all features
that are in g but not in p.

* Decrease the weights of all features
that are in p but not in g.

Arc-factored dependency parsing

UPPSALA

swversrer— [raining using structured prediction

* Training involves repeatedly parsing (treebank)
sentences and refining the weights.

* Hence, training presupposes an efficient parsing
algorithm.

Arc-factored dependency parsing

UPPSALA

s Hligher order models

e The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

* An nth-order model scores subgraphs consisting of (at
most) n arcs.

* Second-order: siblings, grand-parents

* Third-order: tri-siblings, grand-siblings

* Higher-order models capture more linguistic structure
and give higher parsing accuracy, but less efficient

Arc-factored dependency parsing

UPPSALA

owversrer—— Parsing algorithms

* Projective parsing
* Inspired by the CKY algorithm
* Collins’ algorithm
* Eisner’s algorithm
* Non-projective parsing:

* Minimum spanning tree (MST) algorithms

Arc-factored dependency parsing

UPPSALA

wvesrer (Graph-based parsing

* Arc-factored parsing is an instance of graph-based
dependency parsing

* Because it scores the dependency graph (tree)

* Graph-based models are often contrasted with
transition-based models (next week)

* There are also grammar-based methods, which
we will not discuss

Arc-factored dependency parsing

UPPSALA

oaversrer QUMIMAry

* The term ‘arc-factored dependency parsing’
refers to dependency parsers that
score a dependency tree by scoring its arcs.

* Arcs are scored by defining features
and assigning weights to these features.

* The resulting parsers can be trained
using structured prediction.

* More powerful scoring models exist.

UPPSALA
UNIVERSITET

Overview

Arc-factored dependency parsing
Collins’ algorithm
Eisner’s algorithm
Transition-based dependency parsing
The arc-standard algorithm
Dependency treebanks

Evaluation of dependency parsers

UPPSALA
UNIVERSITET

Collins’ algorithm

UPPSALA

wvesrer— Colling’ algorithm

* Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* |t can be understood as an extension
of the CKY algorithm to dependency parsing.

* Like the CKY algorithm, it can be characterized

as a bottom-up algorithm
based on dynamic programming.

Collins’ algorithm

ovesrer - Oignatures, CKY

min max

[min, max, C]

Collins’ algorithm

UPPSALA

owvesrer— Oignatures, Collins’

root

min max

[min, max, root]

Collins’ algorithm

UPPSALA

owverser INitialization

I booked a flight from LA

Collins’ algorithm

UPPSALA

UNIVERSITET I nitialization

I booked a flight from LA

[0, 1,1] [1,2, booked] 2,3, 2] [3, 4, flight] [4, 5, from LA]

Collins’ algorithm

w~vesrer Adding a left-to-right arc

I booked a flight from LA

Collins’ algorithm

w~vesrer Adding a left-to-right arc

I booked a flight from LA

1
[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

pmod

v
I booked a flight from LA

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

pmod

v
I booked a flight from LA

3, 5, flight]

Collins’ algorithm

w~vesrer Adding a left-to-right arc

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

min mid max

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

min mid max

Collins’ algorithm

w~vesrer Adding a left-to-right arc

min max

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

min max

score(t) = score(t)) + score(tz) + score(l = r)

Collins’ algorithm

UPPSALA

svesrer Adding a left-to-right arc

for each [min, max] with max - min > 1 do
for each 1 from min to max - 2 do
double best = score[min][max][1l]
for each r from 1 + 1 to max - 1 do
for each mid from 1 + 1 to r do

score[min][mid][1]

t1

to score[mid][max][r]
double current = t; + t2 + score(l » r)

if current > best then

best = current

score[min][max][1] best

UPPSALA
UNIVERSITET

Collins’ algorithm

Adding a right-to-left arc

I booked

a

flight

pmod

\/
from LA

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

pmod

v
I booked a flight from LA

1
[0, 1,1] [1,2, booked]

UPPSALA
UNIVERSITET

Collins’ algorithm

Adding a right-to-left arc

subj

booked

[0, I,1]

[1,2, booked]

a

flight

pmod

\/
from LA

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

subj pmod

\4 v
I booked a flight from LA

[0, 2, booked]

Collins’ algorithm

wvesrer Adding a right-to-left arc

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

min mid max

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

min mid max

Collins’ algorithm

wvesrer Adding a right-to-left arc

min max

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

min max

score(t) = score(t)) + score(tz) + score(r —)

Collins’ algorithm

UPPSALA

svesrer Adding a right-to-left arc

for each [min, max] with max - min > 1 do
for each r from min + 1 to max - 1 do
double best = score[min][max][r]
for each 1 from min to r - 1 do
for each mid from 1 + 1 to r do

score[min][mid][1]

t1

to score[mid][max][r]
double current = t; + t2 + score(r » 1)

if current > best then

best = current

score[min][max][r] best

UPPSALA
UNIVERSITET

Collins’ algorithm

Finishing up

subj

booked

a

flight

pmod

\/
from LA

UPPSALA
UNIVERSITET

Collins’ algorithm

Finishing up

subj

booked

det pmod
\4 v
a flight from LA
[2,3,2] 3, 5, flight]

UPPSALA
UNIVERSITET

Collins’ algorithm

Finishing up

subj

booked

det

pmod

flight

\/
from LA

2,5, flight]

UPPSALA
UNIVERSITET

Collins’ algorithm

Finishing up

subj

I booked

dobj

a

det

pmod

flight

\/
from LA

[0, 2, booked]

2, 5, flight]

UPPSALA
UNIVERSITET

Collins’ algorithm

Finishing up

subj

booked

dobj

a

det

flight

pmod

\/
from LA

[0, 5, booked]

Collins’ algorithm

UPPSALA

avesmer - Complexity analysis

* Space requirement:

O(Iwl’)

* Runtime requirement:

O(Iwl*)

Collins’ algorithm

UPPSALA

oaversrer QUMIMAry

* Collins’ algorithm is a CKY-style algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* It runs in time O(|w]>).
This may not be practical for long sentences.

