UPPSALA
UNIVERSITET

Transition-based
dependency parsing

Syntactic analysis (5LN455)
2014-12-18

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

UPPSALA

UNIVERSITET Ove rVi eW

* Transition-based dependency parsing
The arc-standard algorithm
* Evaluation of dependency parsers

* Projectivity

tisdag 17 december 13

UPPSALA
UNIVERSITET

Transition-based dependency parsing

tisdag 17 december 13

UPPSALA
UNIVERSITET

tisdag 17 december 13

Transition-based dependency parsing

* Eisner’s algorithm runs in time O(|w/3).
This may be too much if a lot of data is involved.

* |dea: Design a dumber but really fast algorithm
and let the machine learning do the rest.

* Eisner’s algorithm searches over many different
dependency trees at the same time.

* A transition-based dependency parser only builds
one tree, in one left-to-right sweep over the input.

UPPSALA
UNIVERSITET

tisdag 17 december 13

Transition-based dependency parsing

Transition-based dependency parsing

* The parser starts in an initial configuration.

* At each step, it asks a guide to choose
between one of several transitions (actions)
into new configurations.

* Parsing stops if the parser reaches a
terminal configuration.

* The parser returns the dependency tree
associated with the terminal configuration.

Transition-based dependency parsing

UPPSALA

wvesrer Generic parsing algorithm

Configuration ¢ = parser.getInitialConfiguration(sentence)
while ¢ is not a terminal configuration do

Transition t = guide.getNextTransition(c)

c = c.makeTransition(t)

return c.getGraph()

tisdag 17 december 13

Transition-based dependency parsing

UPPSALA

UNIVERSITET Va. riatiOn

Transition-based dependency parsers differ
with respect to the configurations
and the transitions that they use.

tisdag 17 december 13

Transition-based dependency parsing

UPPSALA o
UNIVERSITET G U I d es

* We need a guide that tells us what the next
transition should be.

* The task of the guide can be understood as
classification: Predict the next transition (class),
given the current configuration.

tisdag 17 december 13

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* We let the parser run on gold-standard trees.

* Every time there is a choice to make, we simply
look into the tree and do ‘the right thing’ ™.

* We collect all (configuration, transition) pairs
and train a classifier on them.

* When parsing unseen sentences,
we use the trained classifier as a guide.

tisdag 17 december 13

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* The number of (configuration, transition) pairs
is far too large.

* We define a set of features of configurations
that we consider to be relevant
for the task of predicting the next transition.

Example: word forms of the topmost two words
on the stack and the next two words in the buffer

* We can then describe every configuration
in terms of a feature vector.

tisdag 17 december 13

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

configurations in which
we want to do la AN

score for feature 2

< . configurations in which
we want to do ra

score for feature |

tisdag 17 december 13

UPPSALA
UNIVERSITET

tisdag 17 december 13

Transition-based dependency parsing

Training a guide

score for feature 2

ra

score for feature |

classification function
learned by the classifier

Transition-based dependency parsing

UPPSALA

swversrer— [raining a guide

* In practical systems, we have thousands of
features and hundreds of transitions.

* There are several machine-learning paradigms
that can be used to train a guide for such a task.

Examples: perceptron, decision trees,
support-vector machines, memory-based learning

tisdag 17 december 13

Transition-based dependency parsing

UPPSALA

wvester EXample features

Attributes
Adress FORM | LEMMA | POS | FEATS | DEPREL
Stack[0’ X X X X
Stack[1’ X
Ldep(Stack[0]) X
Rdep(Stack[0]) X
Buffer[0’ X X X X
Buffer[1’ X
Ldep(Buffer[0]) X
Ldep(Buffer[0]) X

* Combinations of addresses and attributes (e.g. those
marked in the table)

e Other features, such as distances, number of children, ...

tisdag 17 december 13

UPPSALA
UNIVERSITET

The arc-standard algorithm

tisdag 17 december 13

UPPSALA

swersrer | he arc-standard algorithm

* The arc-standard algorithm is a simple algorithm
for transition-based dependency parsing.

* ltis very similar to shift—reduce parsing
as it is known for context-free grammars.

* |t is implemented in most practical transition-
based dependency parsers, including MaltParser.

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

avesmer Configurations

A configuration for a sentence w =w| ... w,
consists of three components:

* a buffer containing words of w

* a stack containing words of w

* the dependency graph constructed so far

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

avesmer Configurations

* Initial configuration:

* All words are in the buffer.

* The stack is empty.

* The dependency graph is empty.
* Terminal configuration:

* The buffer is empty.

* The stack contains a single word.

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

owversirer POSSible transitions

* shift (sh): push
the next word in the buffer onto the stack

* left-arc (la): add an arc
from the topmost word on the stack, si,
to the second-topmost word, s, and pop s2

* right-arc (ra): add an arc
from the second-topmost word on the stack, s,
to the topmost word, s|, and pop s

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

booked

flight

from LA

I booked a

tisdag 17 december 13

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

I booked a flight from LA

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

=] [

flight

from LA

I booked a

tisdag 17 december 13

flight

from LA

The arc-standard algorithm

UPPSALA

owversrer EXample run

Stack Buffer

a

flight

from LA

P

booked a

tisdag 17 december 13

flight

from LA

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

! flight from LA

P

booked a flight from LA

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

! flight from LA

P

booked a flight from LA

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

flight from LA

T T

booked flight from LA

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

T T

booked flight from LA

ra-pmod

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

e

booked a flight from LA

ra-dobj

tisdag 17 december 13

The arc-standard algorithm

UPPSALA

overster EXample run

Stack Buffer

dobj
subj det pmod
A U
I booked a flight from LA

tisdag 17 december 13

UPPSALA
UNIVERSITET

Evaluation of dependency parsing

tisdag 17 december 13

UPPSALA

wveser Evaluation of dependency parsers

* labelled attachment score:
percentage of correct arcs,
relative to the gold standard

* |abelled exact match:
percentage of correct dependency trees,
relative to the gold standard

* unlabelled attachment score/exact match:
the same, but ignoring arc labels

tisdag 17 december 13

UPPSALA
UNIVERSITET

Word- vs sentence-level evaluation

* Example: 2 sentence corpus
sentence |:9/10 arcs correct
sentence 2: |5/45 arcs correct

* Word-level (micro-average):
(9+15)/(10+45) = 24/55 = 0.436

* Sentence-level (macro-average):
(9/10+15/45)/2 = (0.9+0.33)/2 = 0.617

UPPSALA
UNIVERSITET

Projectivity

tisdag 17 december 13

UPPSALA

oversirer Projectivity

* A dependency tree is projective if:

* For every arc in the tree, there is a directed
path from the head of the arc to all words
occurring between the head and the
dependent (that is, the arc (i,l,j) implies that

i = * k for every k such that min(i,) < k <

max(i, j))

tisdag 17 december 13

UPPSALA

swesiter Projective and non-projective trees

PU

PRED
OB}

ROOT Economic news had little effect on financial markets

ATT SBJ

PU

PC

ATT

¥ N\ 2

ROOT A hearing S scheduled on the issue today

tisdag 17 december 13

UPPSALA

sversrer Projectivity and dependency parsing

* Many dependency parsing algorithms can only
handle projective trees

* Including all algorithms we have discussed

* Non-projective trees do occur in natural
language

* How often depends on language (and
treebank)

tisdag 17 december 13

UPPSALA

st INon-projective dependency parsing

* Variants of transition-based parsing
* Using a swap-transition
* Pseudo-projective parsing

* Graph-based parsing

* Minimum spanning tree algorithms

tisdag 17 december 13

UPPSALA

oaversrer QUMIMAry

* |n transition-based dependency parsing
one does not score graphs but computations,
sequences of (configuration, transition) pairs.

* In its simplest form, transition-based dependency
parsing uses classification.

* One specific instance of transition-based
dependency parsing is the arc-standard algorithm.

tisdag 17 december 13

