
Collins’ and Eisner’s algorithms

Syntactic analysis (5LN455)	

2012-12-16	

Joakim Nivre 
Department of Linguistics and Philology	

Based on slides by Marco Kuhlmann

Collins’ algorithm

Recap: Dependency trees

!

!

!

!

• In an arc h → d, the word h is called the head,
and the word d is called the dependent.	

• The arcs form a rooted tree.

booked a flightI from LA

subj

dobj

det pmod

Recap: The arc-factored model

• To score a dependency tree, score the individual
arcs, and combine the score into a simple sum.	

score(t) = score(a1) + … + score(an)	

• Define the score of an arc h → d as  
the weighted sum of all features of that arc:	

score(h → d) = f1w1 + … + fnwn

Collin’s algorithm

• Collin’s algorithm is a simple algorithm  
for computing the highest-scoring dependency
tree under an arc-factored scoring model.	

• It can be understood as an extension  
of the CKY algorithm to dependency parsing.	

• Like the CKY algorithm, it can be characterized
as a bottom-up algorithm based on dynamic
programming.

Signatures

[min, max, C]

C

min max

Collins’ algorithm

Signatures

[min, max, root]

root

min max

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA][1, 2, booked][0, 1, I] [2, 3, a]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 5, flight]

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

score(t) = score(t1) + score(t2) + score(l → r)

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

for each [min, max] with max - min > 1 do!

 for each l from min to max - 2 do!

 double best = score[min][max][l]!

 for each r from l + 1 to max - 1 do!

 for each mid from l + 1 to r do!

 t1 = score[min][mid][l]!

 t2 = score[mid][max][r]!

 double current = t1 + t2 + score(l ! r)!

 if current > best then!

 best = current!

 score[min][max][l] = best

Collins’ algorithm

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 1, I] [1, 2, booked]

subj pmod

Adding a right-to-left arc

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

[0, 2, booked]

subj pmod

Adding a right-to-left arc

Collins’ algorithm

r

max

t2

l

min mid

t1

Adding a right-to-left arc

Collins’ algorithm

score(t) = score(t1) + score(t2) + score(r → l)

r

min max

t

Adding a right-to-left arc

for each [min, max] with max - min > 1 do!

 for each r from min + 1 to max - 1 do!

 double best = score[min][max][r]!

 for each l from min to r - 1 do!

 for each mid from l + 1 to r do!

 t1 = score[min][mid][l]!

 t2 = score[mid][max][r]!

 double current = t1 + t2 + score(r ! l)!

 if current > best then!

 best = current!

 score[min][max][r] = best

Collins’ algorithm

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmod

[3, 5, flight][2, 3, a]

det

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

[2, 5, flight][0, 2, booked]

dobj

Finishing up

booked a flightI from LA
0 I 2 3 4 5

Collins’ algorithm

subj pmoddet

dobj

[0, 5, booked]

Complexity analysis

• Space requirement:  
O(|w|3)	

• Runtime requirement:  
O(|w|5)

Collins’ algorithm

Extension to the labeled case

• It is important to distinguish dependencies  
of different types between the same two words.	

Example: subj, dobj	

• For this reason, practical systems typically  
deal with labeled arcs.	

• The question then arises how to extend  
Collins’ algorithm to the labeled case.

Collins’ algorithm

Naive approach

• Add an innermost loop that iterates over all  
edge labels in order to find the combination  
that maximizes the overall score.	

• For each step of the original algorithm,  
we now need to make |L| steps,  
where L is the set of all labels.

Collins’ algorithm

Smart approach

• Before parsing, compute a table that lists,  
for each head–dependent pair (h, d),  
the label that maximizes the score of arcs h → d.	

• During parsing, simply look up the best label  
in the precomputed table.	

• This adds (not multiplies!) a factor of |L||w|2  
to the overall runtime of the algorithm.

Collins’ algorithm

Summary

• Collins’ algorithm is a CKY-style algorithm  
for computing the highest-scoring dependency
tree under an arc-factored scoring model.	

• It runs in time O(|w|5).  
This may not be practical for long sentences.

Collins’ algorithm

Eisner’s algorithm

Eisner’s algorithm

• With its runtime of O(|w|5), Collins’ algorithm  
may not be of much use in practice.	

• With Eisner’s algorithm we will be able to solve
the same problem in O(|w|3).

Basic idea

In Collins’ algorithm, adding a left-to-right arc  
is done in one single step, specified by 5 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min max

Eisner’s algorithm

In Collins’ algorithm, adding a left-to-right arc  
is done in one single step, specified by 5 positions.

Basic idea

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min mid

r

max

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Eisner’s algorithm

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done  
in three steps, each one specified by 3 positions.

Comparison

Eisner’s algorithm

Adding a left-to-right arc

for each [min, max] with max - min > 1 do!

 double best- = score[min][max][left][-]!

 double best+ = score[min][max][left][+]!

 for each mid from min + 1 to max - 1 do!

 t
1
 = score[min][mid][left][+]!

 t
2
 = score[mid][max][right][+]!

 double current- = t
1
 + t

2
 + score(min

! max)!

 if current- > best- then!

 best- = current-!

 t
3
 = score[min][mid+1][left][-]!

 t
4
 = score[mid][max][left][+]!

 double current+ = t
3
 + t

4
!

 if current+ > best+ then!

 best+ = current+ !

 score[min][max][left][-] = best-!

 score[min][max][left][+] = best+!

Eisner’s algorithm

Adding a right-to-left arc

Eisner’s algorithm

for each [min, max] with max - min > 1 do!

 double best- = score[min][max][right][-]!

 double best+ = score[min][max][right][+]!

 for each mid from min + 1 to max - 1 do!

 t
1
 = score[min][mid][left][+]!

 t
2
 = score[mid][max][right][+]!

 double current- = t
1
 + t

2
 + score(max

! min)!

 if current- > best- then!

 best- = current-!

 t
3
 = score[min][mid][right][+]!

 t
4
 = score[mid-1][max][right][-]!

 double current+ = t
3
 + t

4
!

 if current+ > best+ then!

 best+ = current+ !

 score[min][max][right][-] = best-!

 score[min][max][right][+] = best+!

Finishing up

• Find mid (from 1 to n) that maximizes: 	

score[0][mid][right][+] + score[mid-1][n][left][+]	

• Left and right half-trees are built independently,
combined only in the last step	

Eisner’s algorithm

Summary

• Eisner’s algorithm is an improvement over
Collin’s algorithm that runs in time O(|w|3).	

• The same scoring model can be used.	

• The same technique for extending the parser to
labeled parsing can be used.	

• Eisner’s algorithm is the basis of current  
arc-factored dependency parsers.

Eisner’s algorithm

