

Treebank Grammars and Parser Evaluation

Syntactic analysis (5LN455)

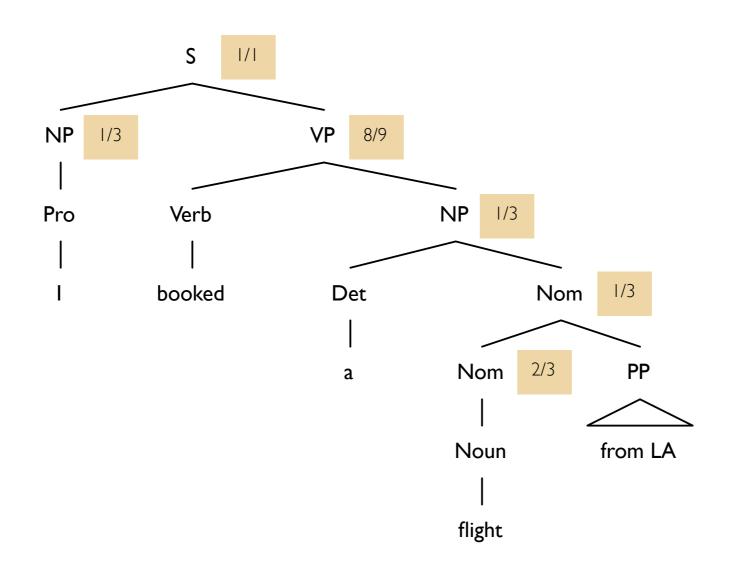
2013-11-27

Sara Stymne

Department of Linguistics and Philology

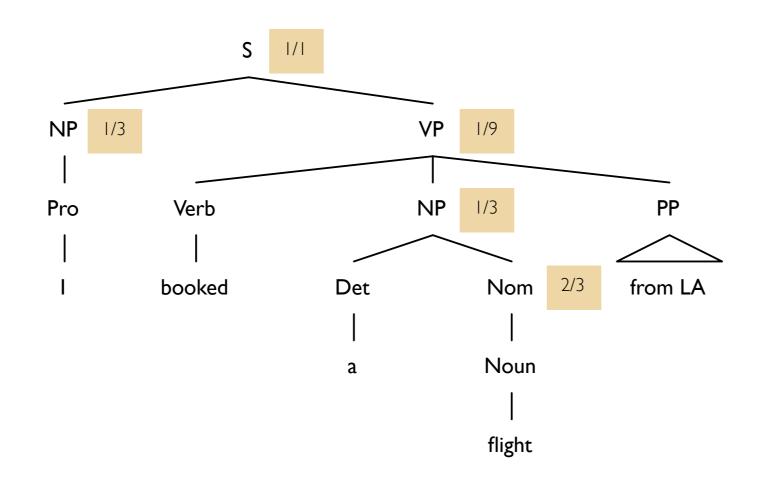
Based on slides from Marco Kuhlmann

Recap: Probabilistic parsing


Probabilistic context-free grammars

A probabilistic context-free grammar (PCFG) is a context-free grammar where

- each rule r has been assigned a probability p(r) between 0 and 1
- the probabilities of rules with the same left-hand side sum up to I


Probability of a parse tree

Probability: 16/729

Probability of a parse tree

Probability: 6/729

Computing the most probable tree

```
for each max from 2 to n
  for each min from max - 2 down to 0
    for each syntactic category C
      double best = undefined
      for each binary rule C -> C1 C2
         for each mid from min + 1 to max - 1
           double t_1 = chart[min][mid][C_1]
           double t<sub>2</sub> = chart[mid][max][C<sub>2</sub>]
           double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
           if candidate > best then
             best = candidate
      chart[min][max][C] = best
```


Backpointers

```
double best = undefined
Backpointer backpointer = undefined
if candidate > best then
  best = candidate
  // We found a better tree; update the backpointer!
  Backpointer bp1 = backpointerChart[min][mid][C1]
  Backpointer bp2 = backpointerChart[mid][max][C2]
  backpointer = new Backpointer(C -> C<sub>1</sub> C<sub>2</sub>, bp<sub>1</sub>, bp<sub>2</sub>)
chart[min][max][C] = best
backpointerChart[min][max][C] = backpointer
```


Treebanks

- Treebanks are corpora in which each sentence has been annotated with a syntactic analysis.
- The annotation process requires detailed guidelines and measures for quality control.
- Producing a high-quality treebank is both time-consuming and expensive.

- One of the most widely known treebanks is the Penn TreeBank (PTB).
- The PTB was compiled at the University of Pennsylvania; the latest release was in 1999.
- Most well known is the Wall Street Journal section of the Penn Treebank.
- This section contains I million tokens from the Wall Street Journal (1987–1989).

PTB bracket labels

Word	Description
NNP	Proper noun
CD	Cardinal number
NNS	Noun, plural
JJ	Adjective
MD	Modal
VB	Verb, base form
DT	Determiner
NN	Noun, singular
IN	Preposition
•••	•••

Phrase	Description
S	Declarative clause
NP	Noun phrase
ADJP	Adjective phrase
VP	Verb phrase
PP	Prepositional
ADVP	Adverb phrase
RRC	Reduced relative
WHNP	Wh-noun phrase
NAC	Not a constituent
•••	•••

Reading rules off the trees

Given a treebank, we can construct a grammar by reading rules off the phrase structure trees.

Sample grammar rule	Span
$S \rightarrow NP-SBJ VP$.	Pierre Vinken Nov. 29.
$NP-SBJ \rightarrow NP$, $ADJP$,	Pierre Vinken, 61 years old,
$VP \rightarrow MDVP$	will join the board
NP → DT NN	the board


```
( (S
      (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (, ,)
      (ADJP
            (NP (CD 61) (NNS years) )
            (JJ old) )
      (, ,) )
      (VP (MD will)
            (VP (VB join)
            (NP (DT the) (NN board) )
            (PP-CLR (IN as)
                  (NP (DT a) (JJ nonexecutive) (NN director) ))
            (NP-TMP (NNP Nov.) (CD 29) )))
      (. .) ))
```



```
(S
  (NP-SBJ
    (NP (NNP Pierre) (NNP Vinken) )
    (,,)
    (ADJP
     (NP (CD 61) (NNS years) )
      (JJ old) )
    (,,)
  (VP (MD will)
    (VP (VB join)
      (NP (DT the) (NN board) )
      (PP-CLR (IN as)
        (NP (DT a) (JJ nonexecutive) (NN director) ))
      (NP-TMP (NNP Nov.) (CD 29) )))
  (. .) ))
```

 $S \rightarrow NP-SBJVP$.


```
(NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (,,)
      (ADJP
        (NP (CD 61) (NNS years) )
        (JJ old) )
      (,,))
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (. .) ))
NP-SBJ \rightarrow NP, ADJP,
```

```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (,,)
      (ADJP
        (NP (CD 61) (NNS years) )
        (JJ old) )
      (,,)
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (. .) ))
ADJP → NP JJ
```



```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (,,)
      (ADJP
        (NP (CD 61) (NNS years) )
        (JJ old) )
      (,,))
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (. .) ))
NP → CD NNS
```



```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (,,)
      (ADJP
       (NP (CD 61) (NNS years) )
        (JJ old) )
      (, ,))
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (. .) ))
NP → NNP NNP
```


Coverage of treebank grammars

- A treebank grammar will account for all analyses in the treebank.
- It can also be used to derive sentences that were not observed in the treebank.

Properties of treebank grammars

- Treebank grammars are typically rather flat.
 Annotators tend to avoid deeply nested structures.
- Grammar transformations.
 In order to be useful in practice, treebank grammars need to be transformed in various ways.
- Treebank grammars are large.
 The vanilla PTB grammar has 29,846 rules.

Estimating rule probabilities

- The simplest way to obtain rule probabilities is relative frequency estimation.
- Step I: Count the number of occurrences of each rule in the treebank.
- Step 2: Divide this number by the total number of rule occurrences for the same left-hand side.
- The grammar that you use in the assignment is produced in this way.

Parser evaluation

Different types of evaluation

- Intrinsic versus extrinsic evaluation.
 Evaluate relative to some gold standard vs.
 evaluate in the context of some specific task
- Automatic versus manual evaluation.
 Evaluate relative to some predefined measure vs. evaluate by humans.

Standard evaluation in parsing

- Intrinsic and automatic
- Parsers based on treebank grammars are evaluated by comparing their output to some gold standard.
- For this purpose, the treebank is customarily split into three sections: training, tuning, and testing.
- The parser is developed on training and tuning;
 final performance is reported on testing.

Bracket score

- The standard measure to evaluate phrase structure parsers is bracket score.
- Bracket: [min, max, category]
- One compares the brackets found by the parser to the brackets in the gold standard tree.
- Performance is reported in terms of precision, recall, and F-score.

Bracket score

 The standard measure to evaluate phrase structure parsers is bracket score.

signature!

- Bracket: [min, max, category]
- One compares the brackets found by the parser to the brackets in the gold standard tree.
- Performance is reported in terms of precision, recall, and F-score.

Evaluation measure

• Precision:

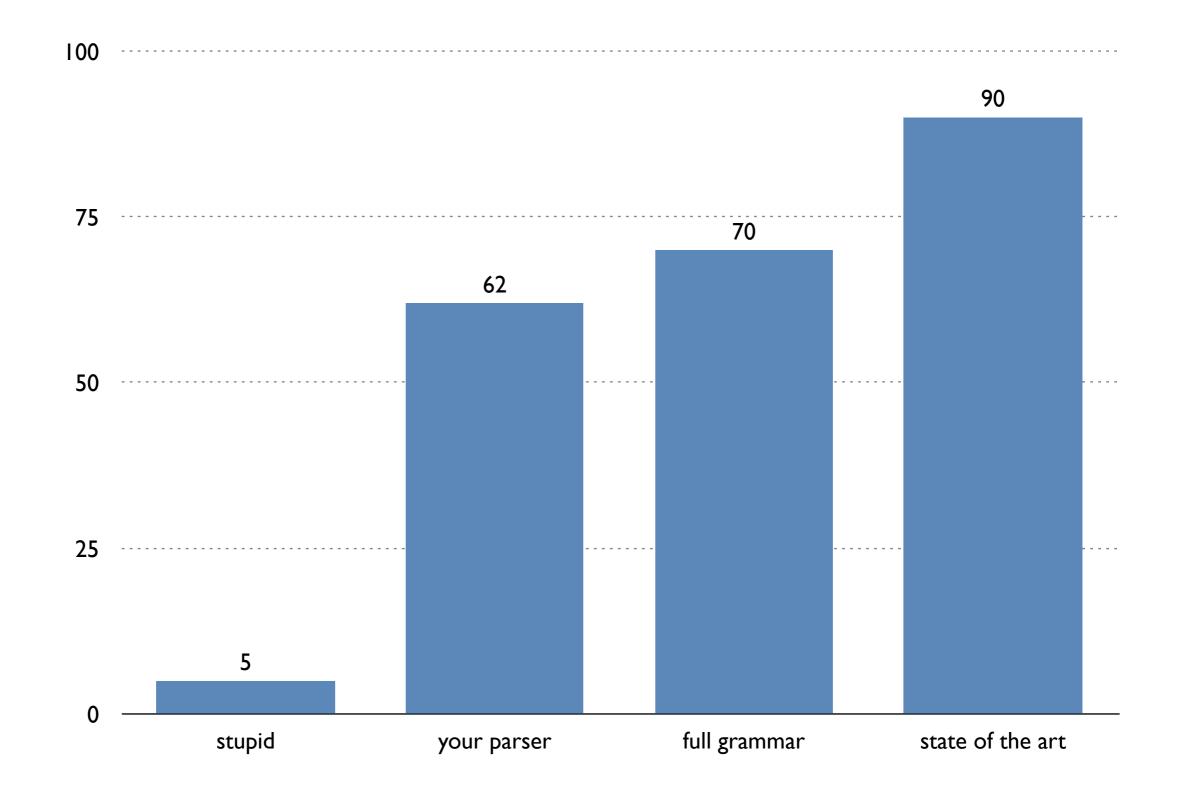
Out of all brackets found by the parser, how many are also present in the gold standard?

Recall:

Out of all brackets in the gold standard, how many are also found by the parser?

• FI-score:

harmonic mean between precision and recall:


2 × precision × recall / (precision + recall)

UPPSALA

UNIVERSITET

FI-scores for the WSJ

Domains and languages

- Most of the parsing research is performed for English on the Wall Street Journal part of Penn Treebank
- Results for other English domains and for other languages are often worse than English WSJ
- Possible reasons
 - Parsing methods developed for English tends to work best for English (WSJ)
 - Language differences
 - Annotation differences
 - Treebank size and quality
 - ...

Treebank types - examples

- Phrase-structure treebanks
 - Penn treebank (English, and Chinese, Arabic)
 - NEGRA (German)
- Dependency treebanks
 - Prague Dep. treebank (Czech, + other)
 - Danish Dep. treebank (Danish)
 - Converted phrase-structured treebanks (e.g. Penn)
- Other
 - CCGBank (CCG, English)
 - LinGO Redwoods (HPSG, English)

Swedish Treebank

- Combination of two older treebanks which have been merged and harmonized:
 - SUC (Stockholm-Umeå Corpus)
 - Talbanken
- Size: ~350 000 tokens
- Phrase structure annotation with functional labels
- Converted to dependency annotation
- Some parts checked by humans, some annotated automatically

Summary

- One can extract probabilistic context-free grammars from treebanks.
- Parsers can be evaluated by comparing their output against a gold standard.
- Reading: J&M 12.4, 14.3, 14.7