
The CKY algorithm part 1:
Recognition

Syntactic analysis (5LN455)

2012-11-18

Sara Stymne
Department of Linguistics and Philology
Mostly based on slides from Marco Kuhlmann

tisdag 19 november 13

Recap: Parsing

tisdag 19 november 13

Parsing

The automatic analysis of a sentence
with respect to its syntactic structure.

tisdag 19 november 13

Phrase structure trees

leaves (bottom)

prefer

a

morning

flightNoun

Nom Noun

NomDet

NPVerb

I

Pro

VPNP

S root (top)

tisdag 19 november 13

Ambiguity

booked

a

flight

Nom PP

NomDet

NPVerb

I

Pro

VPNP

S

from LANoun

tisdag 19 november 13

Ambiguity

booked

a

NomDet

NP PPVerb

I

Pro

VPNP

S

from LA

flight

Noun

tisdag 19 november 13

Parsing as search

• Parsing as search:
search through all possible parse trees
for a given sentence

• bottom–up:
build parse trees starting at the leaves

• top–down:
build parse trees starting at the root node

tisdag 19 november 13

Overview of the CKY algorithm

• The CKY algorithm is an efficient bottom-up
parsing algorithm for context-free grammars.

• It was discovered at least three (!) times
and named after Cocke, Kasami, and Younger.

• It is one of the most important and most used
parsing algorithms.

tisdag 19 november 13

Applications

The CKY algorithm can be used to compute
many interesting things.
Here we use it to solve the following tasks:

• Recognition:
Is there any parse tree at all?

• Probabilistic parsing:
What is the most probable parse tree?

tisdag 19 november 13

Restrictions

• The CKY algorithm as we present it here can
only handle rules that are at most binary:
C → wi , C → C1 , C → C1 C2 .

• This restriction is not a problem theoretically,
but requires preprocessing (binarization) and
postprocessing (debinarization).

• A parsing algorithm that does away with this
restriction is Earley’s algorithm (J&M 13.4.2).

tisdag 19 november 13

Restrictions - details

• The CKY algorithm originally handles grammars in
CNF (Chomsky normal form):
C → wi , C → C1 C2 , (S → ε)

• ε is normally not used in natural language grammars

• We also allow unit productions, C → C1

• Extended CNF

• Easy to integrate into CNF, easier grammar
conversions

tisdag 19 november 13

Conventions

• We are given a context-free grammar G
and a sequence of word tokens w = w1 … wn .

• We want to compute parse trees of w
according to the rules of G.

• We write S for the start symbol of G.

tisdag 19 november 13

Fencepost positions

We view the sequence w as a fence with n holes,
one hole for each token wi ,
and we number the fenceposts from 0 till n.

0 1 2 3 4 5

m
or
ni
ng

fli
gh
t

I

w
an
t

a

tisdag 19 november 13

Structure

• Is there any parse tree at all?

• What is the most probable parse tree?

tisdag 19 november 13

Recognition

tisdag 19 november 13

Recognizer

A computer program that can answer the question

Is there any parse tree at all
for the sequence w according to the grammar G?

is called a recognizer.

In practical applications one also wants
a concrete parse tree, not only an answer
to the question whether such a parse tree exists.

Recognition

tisdag 19 november 13

Parse trees

booked

a

flight

Nom PP

NomDet

NPVerb

I

Pro

VPNP

S

from LANoun

Recognition

tisdag 19 november 13

Preterminal rules and inner rules

• preterminal rules:
rules that rewrite a part-of-speech tag
to a token, i.e. rules of the form C → wi .

Pro → I, Verb → booked, Noun → flight

• inner rules:
rules that rewrite a syntactic category to other
categories: C → C1 C2 , C → C1 .

S → NP VP, NP → Det Nom, NP → Pro

Recognition

tisdag 19 november 13

Recognizing small trees

Recognition

C → wi

wi

tisdag 19 november 13

Recognizing small trees

Recognition

C

wi

tisdag 19 november 13

Recognizing small trees

Recognition

C

covers all words
between i – 1 and i

tisdag 19 november 13

Recognizing big trees

C → C1 C2

Recognition

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

tisdag 19 november 13

Recognizing big trees

Recognition

C

C2C1

covers all words
btw min and mid

covers all words
btw mid and max

tisdag 19 november 13

Recognizing big trees

Recognition

C

covers all words
between min and max

tisdag 19 november 13

Questions

• How do we know that we have recognized
that the input sequence is grammatical?

• How do we need to extend this reasoning
in the presence of unary rules: C → C1 ?

Recognition

tisdag 19 november 13

Signatures

• The rules that we have just seen are independent
of a parse tree’s inner structure.

• The only thing that is important is
how the parse tree looks from the ‘outside’.

• We call this the signature of the parse tree.

• A parse tree with signature [min, max, C] is one
that covers all words between min and max
and whose root node is labeled with C.

Recognition

tisdag 19 november 13

Questions

• What is the signature of a parse tree
for the complete sentence?

• How many different signatures are there?

• Can you relate the runtime of the parsing
algorithm to the number of signatures?

Recognition

tisdag 19 november 13

Implementation

tisdag 19 november 13

Data structure

• The implementation represents signatures
by means of a three-dimensional array chart.

• Initially, all entries of chart are set to false.
(This is guaranteed by Java.)

• Whenever we have recognized a parse tree
that spans all words between min and max
and whose root node is labeled with C,
we set the entry chart[min][max][C] to true.

Implementation

tisdag 19 november 13

Preterminal rules

for each wi from left to right

 for each preterminal rule C -> wi

 chart[i - 1][i][C] = true

Implementation

tisdag 19 november 13

Binary rules

for each max from 2 to n

 for each min from max - 2 down to 0

 for each syntactic category C

 for each binary rule C -> C1 C2

 for each mid from min + 1 to max - 1

 if chart[min][mid][C1] and chart[mid][max][C2] then

 chart[min][max][C] = true

Implementation

tisdag 19 november 13

Numbering of categories

• In order to use standard arrays, we need to
represent syntactic categories by numbers.

• He we write m for the number of categories;
we number them from 0 till m – 1.

• We choose our numbers such that the start
symbol S gets the number 0.

Implementation

tisdag 19 november 13

Skeleton code

// int n = number of words in the sequence

// int m = number of syntactic categories in the grammar

// int s = the (number of the) grammar’s start symbol

boolean[][][] chart = new boolean[n + 1][n + 1][m]

// Recognize all parse trees built with with preterminal rules.

// Recognize all parse trees built with inner rules.

return chart[0][n][s]

Implementation

tisdag 19 november 13

Questions

• In what way is this algorithm bottom–up?

• Why is that property of the algorithm important?

• How do we need to extend the code in order to
handle unary rules C → C1 ?

Implementation

tisdag 19 november 13

Summary

• The CKY algorithm is an efficient parsing
algorithm for context-free grammars.

• Today: Recognizing whether there is
any parse tree at all.

• Next time: Probabilistic parsing –
computing the most probable parse tree.

tisdag 19 november 13

Reading

• Recap of the introductory lecture:
J&M chapter 13 up to and including 13.3

• CKY recognition:
J&M section 13.4.1

tisdag 19 november 13

