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Recap: Parsing
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Parsing

The automatic analysis of a sentence 
with respect to its syntactic structure.
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Parsing as search

• Parsing as search: 
search through all possible parse trees 
for a given sentence

• bottom–up: 
build parse trees starting at the leaves

• top–down: 
build parse trees starting at the root node
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Overview of the CKY algorithm

• The CKY algorithm is an efficient bottom-up 
parsing algorithm for context-free grammars.

• It was discovered at least three (!) times 
and named after Cocke, Kasami, and Younger.

• It is one of the most important and most used 
parsing algorithms.
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Applications

The CKY algorithm can be used to compute 
many interesting things. 
Here we use it to solve the following tasks:

• Recognition: 
Is there any parse tree at all?

• Probabilistic parsing: 
What is the most probable parse tree?
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Restrictions

• The CKY algorithm as we present it here can 
only handle rules that are at most binary: 
C → wi ,   C → C1 ,   C → C1 C2 .

• This restriction is not a problem theoretically, 
but requires preprocessing (binarization) and 
postprocessing (debinarization).

• A parsing algorithm that does away with this 
restriction is Earley’s algorithm (J&M 13.4.2).
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Restrictions - details

• The CKY algorithm originally handles grammars in 
CNF (Chomsky normal form):
C → wi ,   C → C1 C2 , (S → ε)

• ε is normally not used in natural language grammars

• We also allow unit productions, C → C1

• Extended CNF

• Easy to integrate into CNF, easier grammar 
conversions
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Conventions

• We are given a context-free grammar G 
and a sequence of word tokens  w = w1 … wn .

• We want to compute parse trees of w 
according to the rules of G.

• We write S for the start symbol of G.
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Fencepost positions

We view the sequence w as a fence with n holes, 
one hole for each token wi , 
and we number the fenceposts from 0 till n.

0 1 2 3 4 5

m
or
ni
ng

fli
gh
t

I

w
an
t

a

tisdag 19 november 13



Structure

• Is there any parse tree at all?

• What is the most probable parse tree?
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Recognition
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Recognizer

A computer program that can answer the question

Is there any parse tree at all 
for the sequence w according to the grammar G?

is called a recognizer.

In practical applications one also wants 
a concrete parse tree, not only an answer 
to the question whether such a parse tree exists.

Recognition
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Parse trees
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Preterminal rules and inner rules

• preterminal rules: 
rules that rewrite a part-of-speech tag 
to a token, i.e. rules of the form  C → wi .

Pro → I,  Verb → booked,  Noun → flight

• inner rules: 
rules that rewrite a syntactic category to other 
categories:  C → C1 C2 ,  C → C1 .

S → NP  VP,  NP → Det Nom,  NP → Pro

Recognition
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Recognizing small trees

Recognition

C → wi

wi
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Recognizing small trees

Recognition
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Recognizing small trees

Recognition

C

covers all words 
between i – 1 and i
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Recognizing big trees

C → C1 C2

Recognition

C2C1

covers all words 
btw min and mid

covers all words 
btw mid and max
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Recognizing big trees

Recognition
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Recognizing big trees

Recognition
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covers all words 
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Questions

• How do we know that we have recognized 
that the input sequence is grammatical?

• How do we need to extend this reasoning 
in the presence of unary rules:  C → C1 ?

Recognition
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Signatures

• The rules that we have just seen are independent 
of a parse tree’s inner structure.

• The only thing that is important is 
how the parse tree looks from the ‘outside’.

• We call this the signature of the parse tree.

• A parse tree with signature [min, max, C]  is one 
that covers all words between min and max 
and whose root node is labeled with C.

Recognition
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Questions

• What is the signature of a parse tree 
for the complete sentence?

• How many different signatures are there?

• Can you relate the runtime of the parsing 
algorithm to the number of signatures?

Recognition
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Implementation
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Data structure

• The implementation represents signatures 
by means of a three-dimensional array chart.

• Initially, all entries of chart are set to false. 
(This is guaranteed by Java.)

• Whenever we have recognized a parse tree 
that spans all words between min and max 
and whose root node is labeled with C, 
we set the entry chart[min][max][C] to true.

Implementation
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Preterminal rules

for each wi from left to right

  for each preterminal rule C -> wi

    chart[i - 1][i][C] = true

Implementation
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Binary rules

for each max from 2 to n

  for each min from max - 2 down to 0

    for each syntactic category C

      for each binary rule C -> C1 C2

        for each mid from min + 1 to max - 1

          if chart[min][mid][C1] and chart[mid][max][C2] then

            chart[min][max][C] = true

Implementation
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Numbering of categories

• In order to use standard arrays, we need to 
represent syntactic categories by numbers.

• He we write m for the number of categories; 
we number them from 0 till m – 1.

• We choose our numbers such that the start 
symbol S gets the number 0.

Implementation
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Skeleton code

// int n = number of words in the sequence

// int m = number of syntactic categories in the grammar

// int s = the (number of the) grammar’s start symbol

boolean[][][] chart = new boolean[n + 1][n + 1][m]

// Recognize all parse trees built with with preterminal rules.

// Recognize all parse trees built with inner rules.

return chart[0][n][s]

Implementation

tisdag 19 november 13



Questions

• In what way is this algorithm bottom–up?

• Why is that property of the algorithm important?

• How do we need to extend the code in order to 
handle unary rules  C → C1 ?

Implementation
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Summary

• The CKY algorithm is an efficient parsing 
algorithm for context-free grammars.

• Today:  Recognizing whether there is 
any parse tree at all.

• Next time:  Probabilistic parsing – 
computing the most probable parse tree.
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Reading

• Recap of the introductory lecture: 
J&M chapter 13 up to and including 13.3

• CKY recognition: 
J&M section 13.4.1
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