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Overview

▶ Goal today: give an overview of research on dependency
parsing across multiple:
▶ Languages
▶ Treebanks
▶ Domains/genres

▶ Main focus on research 2017 and onwards
▶ This is one of my main research interests:

▶ Going into details about my own work
▶ Also trying to give a general overview of trends



Intro
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I also struggle with passwords
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. . . and differences

나는 또한 비밀 번호를 알아내느라 애먹고 있다
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advcl

aux

root

Korean

Minullakin on vaikeuksia salasanojen kanssa
cop:own

nsubj:cop
nmod case

root
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Multilingual parsing

▶ We can take advantage of language similarities!

multiple models

multiple languages

one model

multiple languages
languages have equal status

source and target languages

Multilingual parsing

multi−source single−source

polymonolingual

polyglot

cross−lingual

Figure by Miryam de Lhoneux



Cross-lingual parsing

▶ Popular in recent research
▶ Main purpose: improve parsing performance for a low-resource

language by using data from another (related) language
▶ Zero-shot
▶ Few-shot

▶ Two main approaches:
▶ Annotation transfer
▶ Model transfer



Polyglot parsing

▶ Recently started to receive increased research interest
▶ Main purpose: improve parsing performance for a set of

languages by using a joint model
▶ More diverse sets of languages:

▶ Low-resource
▶ Medium-resource
▶ Large-resource(?)

▶ Main approach:
▶ Joint training



Cross-Lingual Parsing Methods

▶ Data transfer
▶ Annotation projection (Hwa et al., 2005)
▶ Machine translate treebanks (Tiedemann et al., 2014)

▶ Joint models (with language embeddings) (Ammar et al.,
2016; Smith et al., 2018)

▶ Models based on multilingual representations:
▶ Part-of-speech tags (delelxicalized parsing, Zeman and Resnik

(2008))
▶ Cross-lingual word clusters (Täckström et al., 2012)
▶ Cross-lingual embeddings (Ammar et al., 2016; Ahmad et al.,

2019)
▶ Multilingual LMs (Kondratyuk and Straka, 2019; Üstün et al.,

2020)



Cross-Lingual Parsing: Target

▶ Overall performance across a range of languages
▶ UDify: trained on 75 languages (Kondratyuk and Straka, 2019)
▶ UDapter: trained on 13 diverse languages, with typological

features (Üstün et al., 2020)
▶ Performance for specific languages

▶ 1 target, 1 source language (Vania et al., 2019)
▶ 1 target + 3 source languages (Meechan-Maddon and Nivre,

2019)
▶ Our work



Neural networks for cross-lingual and polyglot parsing

▶ Neural networks typically work well with multiple languages
▶ Cross-lingual systems can be viewed as multi-task systems
▶ Possible to share all or parts of an architecture
▶ Allows language representations as part of models
▶ Cross-lingual word embeddings an important resource



Within-language domain differences
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Cross-domain parsing

▶ Even within a language, parsing can be affected by lack of
data for some domain

▶ Cross-domain parsing can be approached as cross-lingual
parsing

▶ Domain adaptation techniques
▶ Few datasets with labeled data
▶ Mainly unsupervised approaches

▶ In this talk I will thus focus on cross-treebank parsing, partly
covering domain differences
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Parsing across different treebanks



Parsing with treebank embeddings

▶ I will now present our own work on treebank embeddings
▶ Add a represention of the treebank to each word
▶ An approach that works both across languages and treebanks
▶ Joint learning in a neural network setting
▶ Simple and effective!
▶ Stymne et al. (2018)
▶ Goal of this work: improve parsing for languages with multiple

treebanks



Joint work

Miryam de Lhoneux Aaron Smith Joakim Nivre



Cross-Treebank Parsing Approaches

▶ Single treebank training
▶ Concatenation
▶ Concatenation + fine tuning
▶ Adversarial learning
▶ Treebank embeddings



Mono-treebank

▶ Train each treebank on its own
▶ Apply to each treebank’s test data
▶ For extra test set, pick one of these models

▶ Simple, but does not take advantage of all available data
▶ Has separate models for each treebank



Mono-treebank

▶ Train each treebank on its own
▶ Apply to each treebank’s test data
▶ For extra test set, pick one of these models

▶ Simple, but does not take advantage of all available data
▶ Has separate models for each treebank



Concatenation

▶ Concatenate all training data from all treebanks for a language
(Björkelund et al., 2017; Das et al., 2017)

▶ Use this model for all test sets from that language

▶ Simple, but does not take the differences between treebanks
into account

▶ Needs only one model for all treebanks
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Concatenation + fine tuning

▶ Concatenate all training data from all treebanks for a language
and train a joint model

▶ For each individual treebank, fine tune the joint model, by
training more on only that treebank (Che et al., 2017, Shi et
al., 2017)

▶ For extra test set, pick one of these models

▶ Needs more training than previous suggestion
▶ Has separate models for each treebank
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Adversarial learning

▶ Proposed for this scenario by Sato et al. (2017)
▶ Use an adversarial task of treebank identification during

training
▶ Use both treebank-specific structures and a shared structure

for the adversarial task

▶ Quite complex architecture
▶ Needs only one model for all treebanks, but a treebank

representation for input sentences
▶ Not explored in this work, but shown to give some gains
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Treebank embeddings

▶ We can apply language embeddings to the monolingual case,
getting “treebank embeddings”

▶ Treebank embeddings can learn to represent important
differences between treebanks in the same language

▶ This model can also easily be extended to include more
languages

▶ Simple, and takes the differences between treebanks into
account

▶ Needs only one model for all treebanks, but a treebank
representation for input sentences
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Cross-treebank parsing approaches

▶ Comparison of different approaches:

Approach Number Simple Sensitive to Pools
models Differences data

Mono-treebank Many Yes Yes No
Concatenation 1 Yes No Yes
Concat+fine tuning Many No Yes Yes
Adversarial learning 1 No Yes Yes
TB embeddings 1 Yes Yes Yes



Proxy Treebanks

▶ For all methods, except concatenation, we need to define
which treebank an input sentence comes from (at test time)

▶ We call this a proxy treebank
▶ single/concat+ft: for choosing a model
▶ tb-emb: for setting a treebank embedding



Experiments

▶ 9 languages with at least two UD training treebanks + PUD
▶ Comparing four methods for handling multiple treebanks
▶ BiLSTM-based transition-based dependency parser (de

Lhoneux et al., 2017)
▶ Using UD version 2.1 treebanks
▶ All results are shown as LAS scores



UUparser
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Overall results – matching test sets

Language Treebank Size mono concat c+ft tb-emb

Czech

PDT 68495 86.7 87.5+ 88.3∗ 87.2+

CAC 23478 86.0 87.8+ 88.1+ 88.5+

FicTree 10160 84.3 89.3+ 89.5+ 89.2+

CLTT 860 72.5 86.2+ 86.9+ 86.0+

English
EWT 12543 82.2 82.1 82.5 83.0
LinES 2738 72.1 76.7+ 77.3+ 77.3+

ParTUT 1781 80.5 83.5+ 85.4+ 85.7+

Finnish FTB 14981 76.4× 74.4 80.1∗ 80.6∗

TDT 12217 78.1× 70.6 80.6∗ 80.3∗

French

FTB 14759 83.2 83.2 83.9∗ 84.1∗

GSD 14554 84.5 84.1 85.3 85.6×

Sequoia 2231 84.0 86.0+ 89.8∗ 89.1∗
ParTUT 803 79.8 80.5 89.1∗ 90.3∗

Italian
ISDT 12838 87.7 87.9 87.7 87.6
PoSTWITA 2808 71.4 76.7+ 76.8+ 77.0+

ParTUT 1781 83.4 89.2+ 89.3+ 88.8+

Portuguese GSD 9664 88.3 87.3 89.0∗ 89.1∗

Bosque 8331 84.7 84.2 86.2× 86.3∗

Russian SynTagRus 48814 90.2× 89.4 90.4× 90.4×

GSD 3850 74.7× 73.4 79.8∗ 80.8∗

Spanish AnCora 14305 87.2× 86.2 87.5× 87.6×

GSD 14187 84.7 83.0 85.8× 86.2∗

Swedish Talbanken 4303 79.6 79.1 80.2 80.6×

LinES 2738 74.3 76.8 77.3+ 77.1+

Average 81.4 82.7+ 84.9∗ 84.9∗



Overall results - PUD sets

PUD: parallel dataset without any training data

Language mono concat c+ft tb-emb
Czech 81.7 81.7 81.6 81.2
English 80.7 80.0 81.7∗ 81.9∗

Finnish 78.6× 73.0 81.3∗ 80.9∗

French 79.1 79.4 80.2∗ 80.3∗

Italian 77.4 86.0 85.8+ 86.1+

Portuguese 75.2 76.8+ 77.5+ 77.6+

Russian 70.1× 68.7 77.6∗ 78.0∗

Spanish 79.8 79.9 80.8+ 80.9∗

Swedish 70.3 72.0+ 73.2∗ 73.6∗

Average 77.9 77.5 80.0∗ 80.1∗



Extension to cross-lingual parsing

▶ Use treebank embeddings for treebanks from more than one
language

▶ Typically works better for closely related languages
▶ Open questions:

▶ Language mix
▶ Model size



What about genre/domain?



Cross-Lingual Parsing across Domains

▶ Stymne (2020) Cross-Lingual Domain Adaptation for
Dependency Parsing. Workshop on Treebanks and Linguistic
Theories (TLT)

▶ Improve dependency parsing for specific text types:
▶ Twitter
▶ Transcribed speech

▶ By treebank combination:
▶ In-language out-of-domain data
▶ In-domain data from other languages
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Example: Transcribed Speech

enn em enn den her som ein eg hadde
than uh than this here which one I had

reparandum

discourse:filler
case

obl

advmod

obj

parataxis:deletion
nsubj

root

Spoken Nynorsk



Experiments

▶ Languages
▶ Speech: French, Norwegian, and Slovenian //Low-resource:

Naija and Komi-Zyrian
▶ Twitter: English, Italian, and Hindi–English code-switching

▶ Labelled attachment score for evaluation
▶ More results in the paper



Combining treebanks

Spoken Twitter
Same L Other L Fr No Sl It En HiEn Mean

IND OOD IND OOD
– X – – 63.4 52.8 46.9 62.8 55.7 25.0 51.1
– X – X 64.3 54.4 47.6 63.4 54.6 24.9 51.5
– X X – 64.5 52.0 52.7 65.5 58.9 25.7 53.2



Combining with matching treebanks

Spoken Twitter
Same L Other L Fr No Sl It En HiEn Mean

IND OOD IND OOD
– X – – 63.4 52.8 46.9 62.8 55.7 25.0 51.1
– X – X 64.3 54.4 47.6 63.4 54.6 24.9 51.5
– X X – 64.5 52.0 52.7 65.5 58.9 25.7 53.2
X – – – 76.6 74.3 65.8 82.3 74.7 65.0 73.1
X – X – 76.1 73.9 65.3 81.8 76.3 64.1 72.9
X X – – 84.0 78.3 71.8 84.2 82.8 67.6 78.1
X X X – 83.7 78.7 72.7 84.5 82.1 67.2 78.2



Low-resource languages

Related OOD Related OOD + other IND
Interp Ensemble Interp Ensemble

Komi Zyrian 14.8 18.4 19.0 18.7
Naija 28.0 27.4 30.0 28.3



Discussion

▶ Combining treebanks across languages and domains is feasible
▶ Small, but quite consistent gains from adding in-domain

treebanks from other languages

▶ These experiments were performed with a somewhat old
RNN-based parser
▶ Müller-Eberstein et al. (2021) also suggests that matching

data for genre across languages is useful, with an
mBERT-based parser

▶ We are currently working on this
▶ Tentative results: in-genre data often helps, but mainly in

combination with other genres as well
▶ In-language data more important than in-genre data
▶ UD-MULTIGENRE: variant of UD split into genre-specific

subset (Danilova and Stymne, 2023)



Discussion

▶ Combining treebanks across languages and domains is feasible
▶ Small, but quite consistent gains from adding in-domain

treebanks from other languages
▶ These experiments were performed with a somewhat old

RNN-based parser
▶ Müller-Eberstein et al. (2021) also suggests that matching

data for genre across languages is useful, with an
mBERT-based parser

▶ We are currently working on this
▶ Tentative results: in-genre data often helps, but mainly in

combination with other genres as well
▶ In-language data more important than in-genre data
▶ UD-MULTIGENRE: variant of UD split into genre-specific

subset (Danilova and Stymne, 2023)



Transfer Language Choice



Cross-Lingual Parsing Targeting a Specific Language

▶ Problem: Which language(s) to transfer from?
▶ Common strategy: Select a language that belongs to the same

language family or has a small phylogenetic distance in the
language family tree to the task language (Cotterell and
Heigold, 2017; Dehouck and Denis, 2019; Meechan-Maddon
and Nivre, 2019; Vania et al., 2019)

▶ Not all languages have a closely related language with a
treebank

▶ Not all languages in a single language family share the same
linguistic properties
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Options for Transfer Language Choice

▶ Some strategies explored in our work
▶ de Lhoneux et al. (2017a):

▶ Genetic distance
▶ Geographical closeness
▶ Sharing the same script
▶ Dev performance in a zero-shot setting

▶ Smith et al. (2018):
▶ Genetic distance
▶ Clustering treebank/language embeddings from a small model

trained on all available training languages
▶ Stymne (2020)

▶ Matching domain/genre



Systematic Transfer Language Choice

▶ Lin et al. (2019) Choosing Transfer Languages for
Cross-Lingual Learning. ACL

▶ Investigate the impact of different factors on transfer language
choice

▶ Create a ranker, LangRank, for ranking transfer languages
based on these features

▶ Apply this to four NLP tasks
▶ Machine translation (joint training)
▶ POS-tagging (joint training)
▶ Entity linking (zero shot)
▶ Dependency parsing (zero shot)



Features

▶ Dataset features:
▶ Dataset size, type-token ratio, word and subword overlap

▶ Linguistic Distances: based on the URIEL typological
database (Littell et al., 2017) information-rich vector
identifications of languages drawn from typological,
geographical, and phylogenetic databases:
▶ WALS (Dryer and Haspelmath, 2013)
▶ Ethnologue (Lewis, 2009)
▶ Glottolog (Nordhoff and Hammarström, 2011)
▶ PHOIBLE (Moran and McCloy, 2014)



Linguistic Distances

▶ Geographic distance (dgeo): The spherical distance among
languages on Earth’s surface, mainly based on abstractions of
locations from Glottolog

▶ Genetic distance (dgen): The genealogical distance among
languages, based on the world language family tree from Glottolog

▶ Cosine distance of feature vectors:

▶ Phonological distance (dpho): Phonological vectors from
WALS and Ethnologue

▶ Inventory distance (dinv) Phonological vectors from
PHOIBLE

▶ Syntactic distance (dsyn): Syntactic vectors from WALS
▶ Featural distance (dfea): Combinations of all other feature

vectors



Transfer Language Choice as a Ranking Problem

Average Normalized discounted cumulative gain @3
From (Lin et al., 2019, p. 3130)



Example Decision Tree

From Lin et al. (2019, p. 3132)



Going Beyond Parsing

▶ Fine-tuning large multilingual LMs useful across many tasks
▶ NLI, QA, Paraphrases, semantic similarity, NER, POS, parsing,

. . .
▶ Devlin et al. (2019); Wu and Dredze (2019); Lauscher et al.

(2020) . . .
▶ Typical transfer language: English

▶ Mainly due to the availability of training data for many tasks

▶ Recent discussion of this choice:
▶ Lauscher et al. (2020)

▶ Some tendency for structurally similar languages to transfer
best

▶ Turc et al. (2021)
▶ Across tasks, German and Russian tend to be better than

English, even when machine-translated from En



Uppsala at CoNLL Shared Task, 2018



CoNLL Shared task 2018

▶ Shared task on multilingual dependency parsing from raw text
to universal dependencies

▶ Used the UD data, with multiple treebanks for many languages

▶ Most teams trained a parser per treebank
▶ Some teams suggested more advanced strategies, but none did

any comparison between methods
▶ Some teams employed cross-lingual strategies (mainly to small

treebanks)
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UUparser

▶ BiLSTM-based feature extractor (Kiperwasser and Goldberg,
2016)

▶ Transition-based (and graph-based)
▶ Arc-hybrid + SWAP
▶ Static-dynamic oracle

▶ Cross-lingual models
▶ With language/treebank embeddings

▶ de Lhoneux et al. (2017b); Smith et al. (2018)



UUp@CoNLL’18 Shared Task

▶ 82 treebanks, 34 models
▶ Multilingual models with small groups of languages
▶ Grouped languages based on:

▶ Relatedness
▶ Clustering of treebank embeddings

▶ Comparison with a monolingual model
▶ Metric: LAS

Treebank size Mono TB embeddings Diff
Big 79.6 80.3 +0.7
Small 60.1 63.6 +3.5
Low-resource 17.7 25.5 +7.8
All 70.7 72.3 +1.6



CoNLL 2018, Scandinavian languages

Treebank Mono TB embeddings Diff
Danish 79.7 80.1 +0.4
Norwegian BM 87.7 88.3 +0.6
Norwegian NN 86.2 87.4 +1.2
Norwegian NN Spoken 55.5 59.7 +4.2
Swedish TB 83.3 84.3 +1.0
Swedish LinES 78.3 80.5 +2.2
Swedish PUD 75.5 78.2 +2.7
Faroese 40.0 41.7 +1.7 Zero-shot



CoNLL 2018 sample of languages

Treebank Mono TB embeddings Diff
Russian 89.4 89.0 -0.4
Russian 59.3 65.5 +6.2
Ukraine 81.4 82.7 +1.3
Persian 83.2 83.4 +0.2
Kurmanji 7.6 29.5 +21.9
Ancient Greek 63.0 65.2 +2.2
Ancient Greek 71.6 72.2 +0.6
Gothic 60.6 63.4 +2.8
Latin 82.6 83.0 +0.4
Latin 49.9 58.3 +8.4
Latin 63.9 64.1 +0.2
Old Church Slavonic 70.3 70.4 +0.1



Discussion

▶ Training in groups of languages typically helped
▶ More for languages with little data
▶ Often also smaller gains for languages with more data

▶ Preliminary experiments showed that it was better to use
smaller groups of closer languages, than larger groups

▶ Later work shows that later transformer-based parsers may
work as well with massively multilingual training, as with
smaller designed language groups (van der Goot and
de Lhoneux, 2021)
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More about Language Choice



What about more diverse languages?

▶ Yifei Zhang (2021) The Influence of M-BERT and Sizes on
the Choice of Transfer Languages in Parsing. Master thesis,
Uppsala.

▶ Explores correlations with linguistic distances from URIEL,
investigating:
▶ mBERT versus randomly initialized embeddings
▶ Influence of training data size

▶ UUparser variant (Attardi et al., 2020), with embeddings from
mBERT



Languages

▶ Target languages:
▶ Afrikaans, Greek, Vietnamese
▶ 10K training tokens

▶ Transfer languages:
▶ Czech, Dutch, French, German, Ancient Greek, Arabic, Urdo,

Bulgarian, Russian, Hebrew, Chinese, Japanese, Korean, Hindi
▶ 100K training tokens

af_afribooms el_gdt vi_vtb
rd mb diff rd mb diff rd mb diff

Monolingual 63.76 68.56 4.8 70.91 75.78 4.87 49.58 43.98 -5.6
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Joint Learning Experiments

af_afribooms el_gdt vi_vtb
rd mb diff rd mb diff rd mb diff

Monolingual 63.76 68.56 4.8 70.91 75.78 4.87 49.58 43.98 -5.6
nl_alpino 77.97 80.37 2.40 78.71 82.78 4.07 67.14 68.40 1.26
de_gsd 74.75 79.56 4.81 77.86 82.68 4.82 65.47 67.78 2.31
cs_pdt 75.43 79.92 4.49 79.44 84.48 5.04 66.72 69.06 2.34
fr_gsd 78.45 81.85 3.40 82.23 85.85 3.62 69.57 70.95 1.38
ar_padt 71.70 74.07 2.37 73.94 78.22 4.28 62.49 63.98 1.49
ur_udtb 72.32 74.57 2.25 74.22 77.18 2.96 62.95 61.26 -1.69

ru_syntagrus 74.34 78.95 4.61 77.78 83.21 5.43 65.25 66.81 1.56
bg_btb 77.16 80.71 3.55 80.77 84.91 4.14 68.11 69.52 1.40
he_htb 73.81 75.78 1.97 76.45 79.02 2.57 64.43 64.25 -0.18
ko_kaist 75.33 77.54 2.21 77.15 81.57 4.42 65.28 63.77 -1.51
ja_gsd 79.23 80.37 1.14 82.83 85.04 2.21 71.31 68.05 -3.26
zh_gsd 69.82 69.07 -0.75 72.24 71.33 -0.91 61.27 58.42 -2.85
hi_hdtb 76.06 79.37 3.31 78.42 82.72 4.3 61.26 67.42 6.16

grc_proiel 70.42 69.32 -1.1 72.41 72.31 -0.11 60.69 55.45 -5.24
AVERAGE 74.77 77.24 2.47 77.46 80.81 3.35 65.14 65.36 0.22



Correlations with linguistic distances

dgeo dgen dinv dsyn dpho dfea
af rd -0.3998 0.0207 -0.6443 0.086 0.598 -0.4536

mb -0.4097 -0.2067 -0.8089 -0.1014 0.6197 -0.6789
el rd -0.4351 -0.1921 -0.6222 0.0019 -0.5156 -0.429

mb -0.5316 -0.0342 -0.6094 -0.5999 -0.5746 -0.6188
vi rd -0.168 – -0.1944 -0.3067 -0.4769 -0.2654

mb -0.2547 – -0.482 -0.036 -0.0901 -0.5639



Correlations, variations with size

mBERT Joint

dgeo dgen dinv dsyn dpho dfea
af all -0.4097 -0.2067 -0.8089 -0.1014 0.6197 -0.6789

half -0.2732 -0.2108 -0.6966 -0.1412 0.6291 -0.5791
el all -0.5316 -0.0342 -0.6094 -0.5999 -0.5746 -0.6188

half -0.4777 0.3 -0.7217 -0.1833 -0.5678 -0.5201
vi all -0.2547 – -0.482 -0.036 -0.0901 -0.5639

half -0.2096 – -0.4589 -0.1488 -0.1646 -0.5426



Conclusion

▶ Joint parsing
▶ Nearly all transfer languages lead to improvements over

monolingual baseline in all settings
▶ Some languages, e.g. French, transfer well to all target

languages
▶ Transfer language choice shows some variation based on

▶ Zero-shot versus joint
▶ Target language
▶ Embedding type
▶ Relatively stable across training set sizes



Wrapping up



Summary

▶ An increasing interest in cross-lingual and polyglot parsing
▶ Much research focused on low-resource scenarios
▶ I mainly discussed our work, based on UUparser with treebank

embeddings
▶ Can be used for both cross-treebank and multilingual parsing
▶ Simpler than many other proposed methods
▶ No external resources or processing needed
▶ Gives good results both with small and large treebanks
▶ Could potentially be extended to domains



Current trends

▶ This lecture mainly focused on my research
▶ A lot of other work on multilingual parsing
▶ The overall dominating parsing algorithm right now is

graph-based parsing, CLU-algorithm, on top of fine-tuning an
LM
▶ This works well in a multilingual setting, based on a

multilingual LM (e.g. mBERT, XLM-R)

▶ Many current state-of-the-art tools are general-purpose
fine-tuning toolkits, like Trankit (Nguyen et al., 2021) or
Machamp (van der Goot et al., 2021)



Practicalities



Coming up

▶ Monday, Feb. 19: supervision
▶ Wednesday, Feb. 21: lecture on Earley’s algorithm

▶ Recorded lectures + exercise available
▶ Deadlines:

▶ Assignment 2: Feb. 22
▶ Project proposal: Feb 26
▶ Assignment 3: March 4
▶ Seminar 2: March 4



Assignment 3

▶ In assignment 3, you will use UUparser with treebank
embeddings
▶ Based on the Kiperwasser and Goldberg (2016) parser that we

will discuss in seminar 2
▶ No multilingual signal, so you will only explore it in a few-shot

setting (with some target language data)
▶ Allows experiment to run on our Linux cluster, on CPUs

▶ Compare two transfer languages you think are good or bad for
a chosen target

▶ Try out some different types of evaluation and error analysis



Project

▶ Project should have a practical component, e.g.
implementation or empirical study

▶ You also need to connect it to at least one research paper
▶ Common projects

▶ Implement Earley’s algorithm
▶ Cross-lingual dependency parsing: extension of assignment 3

▶ Also other ideas available, or propose your own project
▶ Individual or pair projects

▶ Sign up to a group in Studium
▶ If you want to work in a pair: you need to find a partner

yourself
▶ Do not sign up with a peer unless you have decided to work

together



Project proposal

▶ Due February 26
▶ Around 1/2 A4-page, describing your project plan
▶ Main purposes:

▶ Get you started on your projects
▶ Allow Sara to do feasibility assessments of your project ideas

▶ In case your plans change for some reason after handing in the
proposal – get in touch with Sara to discuss the potential
change



Final project seminar

▶ Discuss your project in smaller groups
▶ No slides of formal presentations
▶ Students working in pairs present independently
▶ We will move the final seminar

▶ Suggestion: March 25, 9–12
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