
Transition-based
dependency parsing

Syntactic analysis/parsing

2023

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

Transition-based dependency parsing

Transition-based dependency parsing

• Eisner’s algorithm runs in time O(|w|3).
This may be too much if a lot of data is involved.

• Idea: Design a dumber but really fast algorithm
and let the machine learning do the rest.

• Eisner’s algorithm searches over many different
dependency trees at the same time.

• A transition-based dependency parser only builds
one tree, in one left-to-right sweep over the input.

Transition-based dependency parsing

• The parser starts in an initial configuration.

• At each step, it asks a guide to choose
between one of several transitions (actions)
into new configurations.

• Parsing stops if the parser reaches a
terminal configuration.

• The parser returns the dependency tree
associated with the terminal configuration.

Transition-based dependency parsing

Generic parsing algorithm

Configuration c = parser.getInitialConfiguration(sentence)

while c is not a terminal configuration do

Transition t = guide.getNextTransition(c)

c = c.makeTransition(t)

return c.getGraph()

Transition-based dependency parsing

Variation

Transition-based dependency parsers differ
with respect to the configurations
and the transitions that they use.

Transition-based dependency parsing

The arc-standard algorithm

The arc-standard algorithm

• The arc-standard algorithm is a simple algorithm
for transition-based dependency parsing.

• It is very similar to shift–reduce parsing
as it is known for context-free grammars.

• It is implemented in most practical transition-
based dependency parsers, including MaltParser.

Configurations

A configuration for a sentence w = w1 … wn
consists of three components:

• a buffer containing words of w

• a stack containing words of w

• the dependency graph constructed so far

The arc-standard algorithm

Configurations

• Initial configuration:

• All words are in the buffer.

• The stack is empty.

• The dependency graph is empty.

• Terminal configuration:

• The buffer is empty.

• The stack contains a single word.

The arc-standard algorithm

Possible transitions

• shift (sh): push
the next word in the buffer onto the stack

• left-arc (la): add an arc
from the topmost word on the stack, s1,
to the second-topmost word, s2, and pop s2

• right-arc (ra): add an arc
from the second-topmost word on the stack, s2,
to the topmost word, s1, and pop s1

The arc-standard algorithm

Terminology

• Stack

• S - the full stack

• σ - partial stack

• [σ|i|j] - a generic stack σ, with elements i,j on top (opening to right)

• Buffer

• B - full buffer

• β - partial buffer

• [i|β] - buffer with element i as the first element (opening to left)

The arc-standard algorithm

Configurations and transitions

• Initial configuration: ([],[0,...,n],[])

• Terminal configuration: ([i],[],A)

• shift (sh):
(σ,[i|β],A) ⇒ ([σ|i],β,A)

• left-arc (la):
([σ|i|j],B,A) ⇒ ([σ|j],B,A∪{j,l,i})

• right-arc (ra):
([σ|i|j],B,A) ⇒ ([σ|i],B,A∪{i,l,j})

The arc-standard algorithm

Example run

I booked a flight from LA

Stack Buffer

booked a flightI from LA

sh

The arc-standard algorithm

Example run

Stack Buffer

booked a flight from LAI

booked a flightI from LA

sh

The arc-standard algorithm

Example run

booked a flightI from LA

Stack Buffer

I booked a flight from LA

la-subj

The arc-standard algorithm

Example run

booked a flightI from LA

subj

Stack Buffer

booked a flight from LA

sh

The arc-standard algorithm

Example run

Stack Buffer

flight from LAbooked a

booked a flightI from LA

subj

sh

The arc-standard algorithm

Example run

Stack Buffer

booked a flightI from LA

subj

la-det

flightbooked a from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj det

Stack Buffer

sh

flightbooked from LA

The arc-standard algorithm

Example run

booked a flightI from LA

subj det

Stack Buffer

flightbooked from LA

ra-pmod

The arc-standard algorithm

Example run

Stack Buffer

ra-dobj

flightbooked

booked a flightI from LA

subj det pmod

The arc-standard algorithm

Example run

Stack Buffer

done!

booked

booked a flightI from LA

subj

dobj

det pmod

The arc-standard algorithm

Complexity and optimality

• Time complexity is linear, O(n), since we only have to
treat each word once

• This can be achieved since the algorithm is greedy, and
only builds one tree, in contrast to Eisner’s algorithm,
where all trees are explored

• There is no guarantee that we will even find the best tree
given the model, the arc-standard model.

• There is a risk of error propagation

• An advantage is that we can use very informative features,
for the ML algorithm

Transition-based dependency parsing

Training a guide

Guides

• We need a guide that tells us what the next
transition should be.

• The task of the guide can be understood as
classification: Predict the next transition (class),
given the current configuration.

Transition-based dependency parsing

Training a guide

• We let the parser run on gold-standard trees.

• Every time there is a choice to make, we simply
look into the tree and do ‘the right thing’™.
(oracle)

• We collect all (configuration, transition) pairs
and train a classifier on them.

• When parsing unseen sentences,
we use the trained classifier as a guide.

Transition-based dependency parsing

Example features

• Combinations of addresses and attributes (e.g. those
marked in the table)

• Other features, such as distances, number of children, ...

Transition-based dependency parsing

Attributes
Adress FORM LEMMA POS FEATS DEPREL
Stack[0] X X X X
Stack[1] X X
Ldep(Stack[0]) X
Rdep(Stack[0]) X
Buffer[0] X X X X
Buffer[1] X
. . .

Training with neural networks

• Neural networks are a good fit for the
classification tasks in transition-based features

• Features can, for instance, be extracted for each
word from recurrent neural networks (RNN), or
transformers

• Each word is partially represented by its
context

Transition-based dependency parsing

Alternative transition models
and oracles

Transition models in Maltparser

• Arcs between two topmost words on stack

• arc-standard model (variant from slides)

• models with swap transition

• Arcs created between stack and buffer

• arc-eager model

• arc-standard (variant from course book)

• Mix

• arc-hybrid

• arc-hybrid + swap

Alternative transition models

Arc-eager model

• Contains four transitions:

• Shift

• Reduce

• Left-arc

• Right-arc

• Advantage: not strictly bottom-up, can create arcs
earlier than in the arc-standard model

• The model that you will implement in assignment 3!

Alternative transition models

Arc-eager model - transitions

• shift:
(σ,[i|β],A) ⇒ ([σ|i],β,A)

• reduce:
([σ|i],B,A) ⇒ (σ,B,A) if (k,l’,i) ∈ A

• left-arc: if (k,l’,i) ∉ A

([σ|i],[j|β],A) ⇒ (σ, [j|β],A∪{j,l,i}) and i ≠ 0

• right-arc:
([σ|i], [j|β],A) ⇒ ([σ|i|j], β,A∪{i,l,j})

Alternative transition models

Arc-eager model - oracle

• From Goldberg & Nivre, CoLING 2012

• A Dynamic Oracle for Arc-Eager Dependency Parsing

Alternative transition models

Algorithm 1 Standard oracle for arc-eager dependency parsing
1: if c = (σ|i, j|β , A) and (j, l, i) 2 Agold then

2: t LEFT-ARCl
3: else if c = (σ|i, j|β , A) and (i, l, j) 2 Agold then

4: t RIGHT-ARCl
5: else if c = (σ|i, j|β , A) and 9k[k < i ^ 9l[(k, l, j) 2 Agold _ (j, l, k) 2 Agold]] then

6: t REDUCE

7: else

8: t SHIFT

9: return t

The first is that it ignores spurious ambiguity in the transition system, that is, cases where a
given dependency tree can be derived in more than one way. The dependency tree in Figure 1
is derived by two distinct transition sequences:3

(1) SH, LASBJ, RAPRD, RAIOBJ, SH, LADET, RE, RADOBJ, RE RAP

(2) SH, LASBJ, RAPRD, RAIOBJ, RE, SH, LADET, RADOBJ, RE RAP

Algorithm 1 will predict (1) but not (2). More generally, whenever there is a SH-RE ambiguity,
which is the only ambiguity that exists in the arc-eager system, the oracle prediction will always
be SH. In this way, the oracle implicitly defines a canonical transition sequence for every tree.

The second limitation is that we have no guarantee for what happens if we apply the oracle to a
configuration that does not belong to the canonical transition sequence. In fact, it is easy to
show that the oracle prediction in such cases can be suboptimal. For example, suppose that
we erroneously choose the SH transition instead of RAIOBJ after the first three transitions in
sequence (1). This results in the following parser configuration:

([0, 2,3], [4, 5,6], {(0, PRD,2), (2, SBJ, 1)})

Starting from this configuration, the oracle defined by Algorithm 1 will predict SH, LADET,
SH, SH, which derives the dependency graph in the left-hand side of Figure 3. Using labeled
attachment score to measure loss, this graph has a loss of 3 compared to the correct tree in
Figure 1, since it fails to include the arcs (2, IOBJ, 3), (2, DOBJ, 5), (2, P, 6).4 However, if we
instead apply the transitions SH, LADET, LADET, RADOBJ, RE, RAP, we end up with the tree in the
right-hand side of Figure 3, which only has a loss of 1.

We say that Algorithm 1 defines a static oracle, because it produces a single static sequence
of transitions that is supposed to be followed in its entirety. The main contribution of this
paper is the notion of a dynamic oracle, which does not presuppose a single canonical transition
sequence for each dependency tree and which can dynamically adapt to arbitrary configurations
that arise during parsing and still make optimal predictions.

3To save space, we sometimes use the following abbreviations: LAl = LEFT-ARCl , RAl = RIGHT-ARCl , RE = REDUCE,
SH = SHIFT.

4In most practical parser implementations, this graph is converted into a tree by adding arcs from the root node to
all words that lack a head. However, the loss will be exactly the same.

963

Non-projective transition model

• Allows non-projective parsing by adding a swap
transition to the arc-standard model

• Contains four transitions:

• Shift

• Swap

• Left-arc

• Right-arc

• Runtime is O(n2) in the worst case (but usually less in
practice)

Alternative transition models

Static oracles

• The ”guide” is a static oracle:

• Two issues:

• Spurious ambiguity not captured

• It is never trained on non-gold configurations
(at test-time, errors will happen, which will
lead to configurations not matching the
gold configurations)

• Solution: dynamic oracles!

Transition-based dependency parsing

Dynamic oracles

Transition-based dependency parsing

Training with a Dynamic Oracle

Figure : Figure taken from Goldberg and Nivre (2013)

Sara Stymne Dependency Parsing with Dynamic Oracles 9

Dynamic oracles - cost function, arc hybrid

Transition-based dependency parsingDynamic Oracle for Arc-Hybrid

Figure : Cost function

Sara Stymne Dependency Parsing with Dynamic Oracles 12

Other alternatives

• Parsing with beam search

• Instead of just keeping the 1-best tree,
keep a beam of the k-best trees in each step

• Requires scoring and ranking of transition
sequences

• Complexity: O(nk)

Non-projective dependency parsing

• Variants of transition-based parsing

• Using a swap-transition

• Graph-based parsing

• Minimum spanning tree algorithms

• Post processing

• Pseudo-projective parsing

• Approximate non-projective parsing

Cross-lingual parsing

• Popular in recent research

• Main purpose: improve parsing performance for a low-
resource language by using data from other (related)
language(s)

• Zero-shot

• Few-shot

• Joint training / polyglot models

• Two main approaches:

• Annotation transfer

• Model transfer

The end of the course

• Literature seminar 2, Wednesday March 1

• Assignments

• Scheduled supervision

• Project

• Contact Sara for help if needed

• Plan your workload carefully!

Project

• Proposal: February 27

• Sign up to groups in Studium, 1-2 students

• Supervision on demand

• Final report: March 24

• Final seminar, March 22

• No formal presentation with slides

• Be prepared to describe and discuss your project in smaller
groups

• Both participants in a pair project should be able to discuss the
project independently

