UPPSALA
UNIVERSITET

Transition-based
dependency parsing

Syntactic analysis/parsing

2023

Sara Stymne
Department of Linguistics and Philology

Based on slides from Marco Kuhlmann

UPPSALA
UNIVERSITET

Transition-based dependency parsing

UPPSALA
UNIVERSITET

Transition-based dependency parsing

* Eisner’s algorithm runs in time O(|w/|3).
This may be too much if a lot of data is involved.

* |dea: Design a dumber but really fast algorithm
and let the machine learning do the rest.

* Eisner’s algorithm searches over many different
dependency trees at the same time.

* A transition-based dependency parser only builds
one tree, in one left-to-right sweep over the input.

UPPSALA
UNIVERSITET

Transition-based dependency parsing

Transition-based dependency parsing

* The parser starts in an initial configuration.

* At each step, it asks a guide to choose
between one of several transitions (actions)
into new configurations.

* Parsing stops if the parser reaches a
terminal configuration.

* The parser returns the dependency tree
associated with the terminal configuration.

Transition-based dependency parsing

UPPSALA

wvesrer Generic parsing algorithm

Configuration ¢ = parser.getInitialConfiguration(sentence)
while ¢ is not a terminal configuration do

Transition t = guide.getNextTransition(c)

c = c.makeTransition(t)

return c.getGraph()

Transition-based dependency parsing

UPPSALA

oversirer Variation

Transition-based dependency parsers differ
with respect to the configurations
and the transitions that they use.

UPPSALA
UNIVERSITET

The arc-standard algorithm

UPPSALA

swersrer | he arc-standard algorithm

* The arc-standard algorithm is a simple algorithm
for transition-based dependency parsing.

* It is very similar to shift—-reduce parsing
as it is known for context-free grammars.

* Itis implemented in most practical transition-
based dependency parsers, including MaltParser.

The arc-standard algorithm

UPPSALA

wvesmer Configurations

A configuration for a sentence w =wj ... wy
consists of three components:

* a buffer containing words of w
* a stack containing words of w

* the dependency graph constructed so far

The arc-standard algorithm

UPPSALA

wvesmer Configurations

* Initial configuration:

* All words are in the buffer.

* The stack is empty.

* The dependency graph is empty.
* Terminal configuration:

* The buffer is empty.

* The stack contains a single word.

The arc-standard algorithm

UPPSALA

oversirer POSSible transitions

* shift (sh): push
the next word in the buffer onto the stack

* left-arc (la): add an arc
from the topmost word on the stack, sj,
to the second-topmost word, s, and pop s

* right-arc (ra): add an arc
from the second-topmost word on the stack, sy,
to the topmost word, s|, and pop s

The arc-standard algorithm

UPPSALA

owversiter— lerminology

e Stack

* S - the full stack

* O - partial stack

* [0O]i|j] - a generic stack O, with elements i,j on top (opening to right)
* Buffer

* B - full buffer

* [- partial buffer

* [i|B] - buffer with element i as the first element (opening to left)

The arc-standard algorithm

UPPSALA

wvesrer Configurations and transitions

* Initial configuration: ([],[O0,...,n],[])

* Terminal configuration: ([i],[],A)

* shift (sh):
(0.[i[B1.A) = ([o]i.B.A)

* left-arc (la):
([olili].B.,A) = ([Oli].B,Au{jLi})

* right-arc (ra):
([o]i]i].B.A) = ([O]i].B.AU{i,Lj})

The arc-standard algorithm

UPPSALA

oveester - EXample run

Stack Buffer

booked

flight

from LA

I booked a

flight

from LA

The arc-standard algorithm

UPPSALA

oveester - EXample run

Stack Buffer

flight

from LA

I booked a

flight

from LA

The arc-standard algorithm

UPPSALA

oveester - EXample run

Stack Buffer

=] L

flight

from LA

I booked a

flight

from LA

The arc-standard algorithm

UPPSALA

oveester - EXample run

Stack Buffer

flight

from LA

a

P

booked a

flight

from LA

UPPSALA

oveester - EXample run

Stack

]

P

booked

The arc-standard algorithm

Buffer

flight

from LA

a

flight

from LA

The arc-standard algorithm

UPPSALA

UNIVERSITET Exam P I e rU n

Stack Buffer

e] [

P

booked a

flight

from LA

The arc-standard algorithm

UPPSALA

UNIVERSITET Exam P I e rU n

Stack Buffer

flight from LA

' o v o

booked flight from LA

The arc-standard algorithm

UPPSALA

UNIVERSITET Exam P I e rU n

Stack Buffer

T T

booked flight from LA

The arc-standard algorithm

UPPSALA

UNIVERSITET Exam P I e rU n

Stack Buffer

T

booked a

flight

pmod j

from LA

The arc-standard algorithm

UPPSALA

UNIVERSITET Exam P I e ru n

Stack Buffer

dobj
r subj —‘ r det
I booked a

L
flight

pmod j

from LA

Transition-based dependency parsing

UPPSALA

svesrer Complexity and optimality

* Time complexity is linear, O(n), since we only have to
treat each word once

* This can be achieved since the algorithm is greedy, and
only builds one tree, in contrast to Eisner’s algorithm,
where all trees are explored

* There is no guarantee that we will even find the best tree
given the model, the arc-standard model.

* There is a risk of error propagation

* An advantage is that we can use very informative features,
for the ML algorithm

UPPSALA
UNIVERSITET

Training a guide

Transition-based dependency parsing

UPPSALA o
UNIVERSITET G U I d es

* We need a guide that tells us what the next
transition should be.

* The task of the guide can be understood as
classification: Predict the next transition (class),
given the current configuration.

UPPSALA
UNIVERSITET

Transition-based dependency parsing

Training a guide

* We let the parser run on gold-standard trees.

* Every time there is a choice to make, we simply
look into the tree and do ‘the right thing’ ™.
(oracle)

* We collect all (configuration, transition) pairs
and train a classifier on them.

* When parsing unseen sentences,
we use the trained classifier as a guide.

Transition-based dependency parsing

UPPSALA

wvesmer EXample features

Attributes
Adress FORM | LEMMA | POS | FEATS | DEPREL
Stack[0] X X X X
Stack[1] X X
Ldep(Stack[0]) X
Rdep(Stack[0]) X
Buffer[0] X X X X
Buffer[1] X

* Combinations of addresses and attributes (e.g. those
marked in the table)

 Other features, such as distances, number of children, ...

Transition-based dependency parsing

UPPSALA

swersrer— [raining with neural networks

* Neural networks are a good fit for the
classification tasks in transition-based features

* Features can, for instance, be extracted for each
word from recurrent neural networks (RNN), or

transformers

* Each word is partially represented by its
context

UPPSALA
UNIVERSITET

Alternative transition models
and oracles

Alternative transition models

UPPSALA

swersrer — 1ransition models in Maltparser

* Arcs between two topmost words on stack
* arc-standard model (variant from slides)
* models with swap transition
* Arcs created between stack and buffer
* arc-eager model
* arc-standard (variant from course book)
* Mix
* arc-hybrid

* arc-hybrid + swap

Alternative transition models

UPPSALA

s Arc-eager model

* Contains four transitions:
* Shift
* Reduce
e Left-arc
* Right-arc

* Advantage: not strictly bottom-up, can create arcs
earlier than in the arc-standard model

* The model that you will implement in assignment 3!

Alternative transition models

UPPSALA

wvesmer Arc-eager model - transitions

e shift;

(0,[i[B1.A) = ([0]i].B.A)

* reduce:
([ali],B,A) = (0,B,A) if (ki) € A
o left-arc: if (k,I',i) ¢ A
([OiL[ilBLA) = (O, [IIBLAU{LY) andiz0
* right-arc:

([oli, iIBT.A) = ([alili], B.Au{ilj})

Alternative transition models

UPPSALA

wvesmer Arc-eager model - oracle

Algorithm 1 Standard oracle for arc-eager dependency parsing

if c = (oli, j|f,A) and (j,1,1) € Agyq then
t <« LEFT-ARC;
else if c = (o|i, j|5,A) and (i, 1, j) € Ayoq then
t < RIGHT-AR(;
else if c = (oli, jI§,A) and Jk[k <iAdl[(k,[,j) €Agpa V (J,1, k) €EAgqql] then
t < REDUCE
else
t < SHIFT
return t

ORI SID AN

* From Goldberg & Nivre, CoLING 2012

* A Dynamic Oracle for Arc-Eager Dependency Parsing

Alternative transition models

UPPSALA

st INOn-projective transition model

* Allows non-projective parsing by adding a swap
transition to the arc-standard model

* Contains four transitions:
* Shift
* Swap
* Left-arc
* Right-arc

* Runtime is O(n?) in the worst case (but usually less in
practice)

Transition-based dependency parsing

UPPSALA

owverser Otatic oracles

* The "guide” is a static oracle:
* Two issues:
* Spurious ambiguity not captured

* Itis never trained on non-gold configurations
(at test-time, errors will happen, which will
lead to configurations not matching the
gold configurations)

* Solution: dynamic oracles!

Transition-based dependency parsing

UPPSALA

svesrer Dynamic oracles

Algorithm 3 Online training with exploration for
greedy transition-based parsers (zth iteration)
1: for sentence W with gold tree 7" in corpus do

2: ¢ < INITIAL(W)

3: while not TERMINAL(c) do

4: CORRECT(c) < {t|o(t;c,T) = true}
5 tp ¢ arg maX;cppgar(c) W - (¢, 1)
6: to < arg max;ccorrecr(c) W o(c,t)
7. if £, CORRECT(c) then

8: UPDATE(W, ¢(c, to), ¢(c, tp))

9: ¢ <— EXPLOREy p(c, to, tp, 1)
10: else
11: ¢+ tp(c)

1: function EXPLOREy ,(c, t,, T, 1)

2 if : > k and RAND() < p then

3: return ,(c)

4 else

5 return NEXT(c, t,)

Figure - Figure taken from Goldberg and Nivre (2013)

Transition-based dependency parsing

UPPSALA

UNIVERSITET D)’namic oracles - cost funCtiOn, alC h)’brld

e C(LEFT; e, T): Adding the arc (b, sg) and pop-
ping sp from the stack means that sp will not
be able to acquire heads from H = {5} U3
and will not be able to acquire dependents from
D = {b} U 3. The cost is therefore the number

of arcs in T of the form (sq. d) and (h, sg) for
he Handd € D.

e C(RIGHT; ¢, T): Adding the arc (s,,5;) and
popping sy from the stack means that s, will
not be able to acquire heads or dependents from
B = {b} U 3. The cost is therefore the number

of arcs in T of the form (sq. d) and (h, sg) for
h.de B.

e C(SHIFT; ¢, T'): Pushing b onto the stack means
that & will not be able to acquire heads from
H = {51} U o, and will not be able to acquire
dependents from D = {sp, 51} U o. The cost
is therefore the number of arcs in T of the form
(b.d) and (h.b)forh € Hand d € D.

UPPSALA

awveser OQther alternatives

* Parsing with beam search

* Instead of just keeping the |-best tree,
keep a beam of the k-best trees in each step

* Requires scoring and ranking of transition
sequences

* Complexity: O(nk)

UPPSALA

st INon-projective dependency parsing

* Variants of transition-based parsing
* Using a swap-transition

* Graph-based parsing
* Minimum spanning tree algorithms

* Post processing
* Pseudo-projective parsing

* Approximate non-projective parsing

UPPSALA

svesrer Cross-lingual parsing

* Popular in recent research

* Main purpose: improve parsing performance for a low-
resource language by using data from other (related)
language(s)

* Zero-shot

* Few-shot

* Joint training / polyglot models
* Two main approaches:

* Annotation transfer

e Model transfer

UPPSALA
UNIVERSITET

The end of the course

Literature seminar 2, Wednesday March |
Assignments

* Scheduled supervision
Project

* Contact Sara for help if needed

Plan your workload carefully!

UPPSALA

UNIVERSITET PrOj eCt

* Proposal: February 27
* Sign up to groups in Studium, |-2 students
* Supervision on demand
* Final report: March 24
 Final seminar, March 22
* No formal presentation with slides

* Be prepared to describe and discuss your project in smaller
groups

* Both participants in a pair project should be able to discuss the
project independently

