

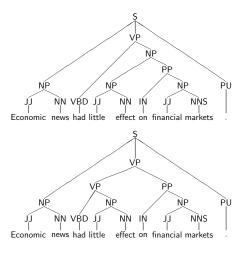
Advanced PCFG Models

Sara Stymne

Syntactic Parsing 2023

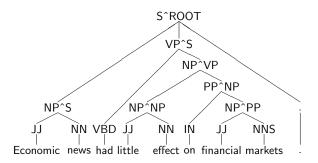
Slides partly from Joakim Nivre

- 1. Problems with Treebank PCFGs
- 2. Parent Annotation
- 3. Lexicalization
- 4. Markovization
- 5. Latent Variables
- 6. Other Parsing Frameworks

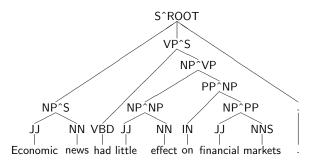

Lack of Sensitivity to Structural Context

Tree Context	NP PP	DT NN	PRP
Anywhere	11%	9%	6%
NP under S	9%	9%	21%
NP under VP	23%	7%	4%

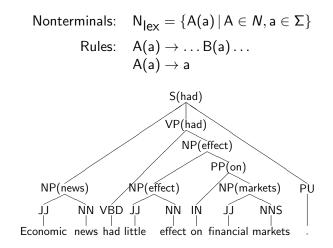
Lack of Sensitivity to Lexical Information


\rightarrow	NP VP PU	1.00
\rightarrow	VP PP	0.33
\rightarrow	VBD NP	0.67
\rightarrow	NP PP	0.14
\rightarrow	JJ NN	0.57
\rightarrow	JJ NNS	0.29
\rightarrow	IN NP	1.00
\rightarrow	•	1.00
\rightarrow	Economic	0.33
\rightarrow	little	0.33
\rightarrow	financial	0.33
\rightarrow	news	0.50
\rightarrow	effect	0.50
\rightarrow	markets	1.00
\rightarrow	had	1.00
\rightarrow	on	1.00
	$\begin{array}{c} \uparrow \\ \uparrow $	$\begin{array}{rcrcr} \rightarrow & VP & PP \\ \rightarrow & VBD & NP \\ \rightarrow & NP & PP \\ \rightarrow & JJ & NN \\ \rightarrow & JJ & NNS \\ \rightarrow & IN & NP \\ \rightarrow & . \\ \rightarrow & Economic \\ \rightarrow & little \\ \rightarrow & financial \\ \rightarrow & news \\ \rightarrow & effect \\ \rightarrow & markets \\ \rightarrow & had \end{array}$

Parent Annotation


Replace nonterminal A with A^B when A is child of B.

Parent Annotation


Replace nonterminal A with A^B when A is child of B.

Also referred to as vertical markovization

Lexicalization

Smoothing of the Lexicalized PCFG

$$q = Q(A(a) \rightarrow B(b) C(a))$$

= $P(A \rightarrow_2 B C, b \mid A, a)$
= $P(A \rightarrow_2 B C \mid A, a) \cdot P(b \mid A \rightarrow_2 B C, a)$
$$q_1 = P(A \rightarrow_2 B C \mid A, a)$$

 $\approx \lambda \frac{\text{count}(A \rightarrow_2 B C, a)}{\text{count}(A, a)} + (1 - \lambda) \frac{\text{count}(A \rightarrow_2 B C)}{\text{count}(A)}$

$$\begin{array}{ll} q_2 &=& P(b \mid A \rightarrow_2 B C, a) \\ &\approx& \lambda \frac{\text{count}(b, A \rightarrow_2 B C, a)}{\text{count}(A \rightarrow_2 B C, a)} + (1 - \lambda) \frac{\text{count}(b, A \rightarrow_2 B C)}{\text{count}(A \rightarrow_2 B C)} \end{array}$$

Non-lexicalized CKY Parsing

PARSE(G, x) for j from 1 to n do for all $A : A \rightarrow x_j \in R$ $C[j - 1, j, A] := Q(A \rightarrow x_j)$ for j from 2 to n do for i from j - 2 downto 0 do for k from i + 1 to j - 1 do for all $A \rightarrow BC \in R$ and C[i, k, B] > 0 and C[k, j, C] > 0if $(C[i, j, A] < Q(A \rightarrow B C) \cdot C[i, k, B] \cdot C[k, j, C])$ then $C[i, j, A] := Q(A \rightarrow B C) \cdot C[i, k, B] \cdot C[k, j, C]$ B[i, j, A] := (k, B, C)return BUILD-TREE(B[0, n, S])

Lexicalized CKY Parsing

PARSE(G, x)for *i* from 1 to *n* do for all $A : A(x_i) \to x_i \in R$ $\mathcal{C}[j-1,j,j,A] := Q(A(x_i) \to x_i)$ for *i* from 2 to *n* do for *i* from i - 2 downto 0 do for k from i + 1 to i - 1 do for h from i + 1 to k do for m from k + 1 to i do for all $A: A(x_h) \to B(x_h)C(x_m) \in R$ and C[i, k, h, B] > 0 and C[k, j, m, C] > 0if $(\mathcal{C}[i, j, h, A] < Q(A(x_h) \rightarrow B(x_h)\mathcal{C}(x_m)) \cdot \mathcal{C}[i, k, h, B] \cdot \mathcal{C}[k, j, m, C])$ then $\mathcal{C}[i, j, h, A] := \mathcal{Q}(A(x_h) \to B(x_h)\mathcal{C}(x_m)) \cdot \mathcal{C}[i, k, h, B] \cdot \mathcal{C}[k, j, m, C]$ $\mathcal{B}[i, i, h, A] := (k, B, h, C, m)$ for h from k + 1 to j do for m from i + 1 to k do for all $A: A(x_b) \rightarrow B(x_m)C(x_b) \in R$ and C[i, k, m, B] > 0 and C[k, i, h, C] > 0if $(C[i, i, h, A] < Q(A(x_h) \rightarrow B(x_m)C(x_h)) \cdot C[i, k, m, B] \cdot C[k, i, h, C])$ then $C[i, i, h, A] := Q(A(x_h) \rightarrow B(x_m)C(x_h)) \cdot C[i, k, m, B] \cdot C[k, i, h, C]$ $\mathcal{B}[i, j, h, A] := (k, B, m, C, h)$ return max_h C[0, n, h, S], BUILD-TREE($\mathcal{B}[0, n, \operatorname{argmax}_h C[0, n, h, S], S]$)

Complexity

- Two extra loops in the algorithm, for the head of left and right trees
- Complexity is thus $O(n^5)$ instead of $O(n^3)$
- Too slow for many practical applications
- Pruning techniques often used
 - Means that we do not necessarily find the best tree, even given our model

Horisontal Markovization

N-ary rule:

 $\mathsf{VP} \to \mathsf{VB} \ \mathsf{NP} \ \mathsf{PP} \ \mathsf{PP}$

No limit $(h = \infty)$:

$$\begin{array}{rcl} \mathsf{VP} & \rightarrow & \langle \mathsf{VP}:[\mathsf{VB}] \; \mathsf{NP} \; \mathsf{PP} \; \mathsf{PP} \rangle \\ \langle \mathsf{VP}:[\mathsf{VB}] \; \mathsf{NP} \; \mathsf{PP} \; \mathsf{PP} \rangle & \rightarrow & \langle \mathsf{VP}:[\mathsf{VB}] \; \mathsf{NP} \; \mathsf{PP} \rangle \; \mathsf{PP} \\ \langle \mathsf{VP}:[\mathsf{VB}] \; \mathsf{NP} \; \mathsf{PP} \rangle & \rightarrow & \langle \mathsf{VP}:[\mathsf{VB}] \; \mathsf{NP} \rangle \; \mathsf{PP} \\ \langle \mathsf{VP}:[\mathsf{VB}] \; \mathsf{NP} \rangle & \rightarrow & \langle \mathsf{VP}:[\mathsf{VB}] \rangle \; \mathsf{NP} \\ \langle \mathsf{VP}:[\mathsf{VB}] \rangle & \rightarrow & \mathsf{VB} \end{array}$$

First-order markovization (h = 1):

$$\begin{array}{rcl} \mathsf{VP} & \rightarrow & \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle \\ \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle & \rightarrow & \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle \mathsf{PP} \\ \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{PP} \rangle & \rightarrow & \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{NP} \rangle \mathsf{PP} \\ \langle \mathsf{VP}{:}[\mathsf{VB}] \dots \mathsf{NP} \rangle & \rightarrow & \langle \mathsf{VP}{:}[\mathsf{VB}] \rangle \mathsf{NP} \\ & \langle \mathsf{VP}{:}[\mathsf{VB}] \rangle & \rightarrow & \mathsf{VB} \end{array}$$

Latent Variables

- Extract treebank PCFG
- Repeat k times:
 - 1. Split every nonterminal A into A_1 and A_2 (and duplicate rules)
 - 2. Train a new PCFG with the split nonterminals using EM
 - 3. Merge back splits that do not increase likelihood

Some Famous (Pre-neural) Parsers

	Par	Lex	Mark	Lat
Collins	+	+	+	_
Charniak	+	+	+	_
Stanford	+	_	+	_
Berkeley	+	_	+	+

Other Parsing Frameworks

- Shift-reduce parsing (transition-based)
 - Does not need a chart
 - Greedy
 - Linear time complexity
- Neural networks in parsing
 - Can reduce independence assumptions
 - Often not grammar-based, but letting the neural networks score all possible phrases (e.g. span-based parsing)
 - Typically gives better results

Other Parsing Frameworks

- Shift-reduce parsing (transition-based)
 - Does not need a chart
 - Greedy
 - Linear time complexity
- Neural networks in parsing
 - Can reduce independence assumptions
 - Often not grammar-based, but letting the neural networks score all possible phrases (e.g. span-based parsing)
 - Typically gives better results
- ▶ The first seminar covered a transition-based neural model