
Graph-based dependency
parsing

Syntactic analysis (5LN455)

2024

Sara Stymne
Department of Linguistics and Philology

Partially based on slides from Marco Kuhlmann

Arc-factored dependency parsing

Ambiguity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

booked a flightI from LA

subj

dobj

det pmod

Ambiguity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

booked a flightI from LA

subj

dobj

det

pmod

Disambiguation

• We need to disambiguate between
alternative analyses.

• We develop mechanisms for scoring dependency
trees, and disambiguate by choosing
a dependency tree with the highest score.

Scoring models and parsing algorithms

Distinguish two aspects:

• Scoring model:
How do we want to score dependency trees?

• Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?

The arc-factored model

• Split the dependency tree t into parts p1, ..., pn,
score each of the parts individually,
and combine the score into a simple sum.

score(t) = score(p1) + … + score(pn)

• The simplest scoring model is
the arc-factored model, where
the scored parts are the arcs of the tree.

Examples of classic features

• ‘The head is a verb.’

• ‘The dependent is a noun.’

• ‘The head is a verb
and the dependent is a noun.’

• ‘The head is a verb
and the predecessor of the head is a pronoun.’

• ‘The arc goes from left to right.’

• ‘The arc has length 2.’

Arc-factored dependency parsing

Training using structured prediction

• Take a sentence w and a gold-standard
dependency tree g for w.

• Compute the highest-scoring dependency tree
under the current weights; call it p.

• Increase the weights of all features
that are in g but not in p.

• Decrease the weights of all features
that are in p but not in g.

Arc-factored dependency parsing

Training using structured prediction

• Training involves repeatedly parsing (treebank)
sentences and refining the weights.

• Hence, training presupposes an efficient parsing
algorithm.

Arc-factored dependency parsing

Higher order models

• The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

• An nth-order model scores subgraphs consisting of (at
most) n arcs.

• Second-order: siblings, grand-parents

• Third-order: tri-siblings, grand-siblings

• Higher-order models capture more linguistic structure
and give higher parsing accuracy, but are less efficient

Arc-factored dependency parsing

Parsing algorithms

• Projective parsing

• Inspired by the CKY algorithm

• Collins’ algorithm

• Eisner’s algorithm

• Non-projective parsing:

• Minimum spanning tree (MST) algorithms

• e.g. Chu-Liu-Edmunds algorithm (CLE)

Arc-factored dependency parsing

Collins’ algorithm

Collins’ algorithm

• Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

• It can be understood as an extension
of the CKY algorithm to dependency parsing.

• Like the CKY algorithm, it can be characterized
as a bottom-up algorithm
based on dynamic programming.

Signatures, Collins’

[min, max, root]

root

min max

Collins’ algorithm

Initialization

booked a flightI from LA
0 I 2 3 4 5

[3, 4, flight] [4, 5, from LA][1, 2, booked][0, 1, I] [2, 3, a]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

Adding a left-to-right arc

booked a flightI from LA
0 I 2 3 4 5

pmod

[3, 5, flight]

Collins’ algorithm

Adding a left-to-right arc

Collins’ algorithm

l

min mid

t1

r

max

t2

Adding a left-to-right arc

score(t) = score(t1) + score(t2) + score(l → r)

Collins’ algorithm

l

min max

t

Adding a left-to-right arc

for each [min, max] with max - min > 1 do

 for each l from min to max - 2 do

 double best = score[min][max][l]

 for each r from l + 1 to max - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(l → r)

 if current > best then

 best = current

 score[min][max][l] = best

Collins’ algorithm

Complexity analysis

• Runtime?

• Space?

for each [min, max] with max - min > 1 do

 for each r from min + 1 to max - 1 do

 double best = score[min][max][r]

 for each l from min to r - 1 do

 for each mid from l + 1 to r do

 t1 = score[min][mid][l]

 t2 = score[mid][max][r]

 double current = t1 + t2 + score(r → l)

 if current > best then

 best = current

 score[min][max][r] = best

Collins’ algorithm

r

max

t2

l

min mid

t1

Complexity analysis

• Space requirement:
O(|w|3)

• Runtime requirement:
O(|w|5)

Collins’ algorithm

Extension to the labeled case

• It is important to distinguish dependencies
of different types between the same two words.

Example: subj, dobj

• For this reason, practical systems typically
deal with labeled arcs.

• The question then arises how to extend
Collins’ algorithm to the labeled case.

Collins’ algorithm

Smart approach

• Before parsing, compute a table that lists,
for each head-dependent pair (h, d),
the label that maximizes the score of arcs h → d.

• This is guaranteed to be the arcs that could
be used in a highest-scoring tree

• During parsing, simply look up the best label
in the pre-computed table.

• This adds (not multiplies!) a factor of |L||w|2
to the overall runtime of the algorithm.

Collins’ algorithm

Eisner’s algorithm

• With its runtime of O(|w|5), Collins’ algorithm
may not be of much use in practice.

• With Eisner’s algorithm we will be able to solve
the same problem in O(|w|3).

• Intuition: collect left and right dependents
independently

Basic idea

In Collins’ algorithm, adding a left-to-right arc
is done in one single step, specified by 5 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min max

Eisner’s algorithm

In Collins’ algorithm, adding a left-to-right arc
is done in one single step, specified by 5 positions.

Basic idea

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

l

min mid

r

max

Basic idea

l

min mid

r

max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min

r

max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Basic idea

l

min max

Eisner’s algorithm

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

ComparisonComparison

Eisner’s algorithmEisner’s algorithm

Dynamic programming tables

• Collins’:

• [min,max,head]

• Eisner’s

• [min,max,head-side,complete]

• head-side (binary): is head to the left or
right?

• complete (binary:) is the non-head side
still looking for dependents?

Eisner’s algorithm

Graphic representation

• [min,max,left,yes]

• [min,max,right,yes]

• [min,max,left,no]

• [min,max,right,no]

Eisner’s algorithm

Graphic representation

• [min,max,left,yes]

• [min,max,right,yes]

• [min,max,left,no]

• [min,max,right,no]

Eisner’s algorithm

Possible operations

Eisner’s algorithm

+ =

+ =

+ =

+ =

i k k j i j

i k k j i j

i k k+1 j i j

i k k+1 j i j

Pseudo code

for each i from 0 to n and all d,c do

C[i][i][d][c] = 0.0

for each m from 1 to n do

 for each i from 0 to n-m do

 j = i+m

 C[i][j][⟵][1] = maxi≤q<j(C[i][q][→][0] + C[q+1][j][⟵][0]+score(wj,wi)

C[i][j][→][1] = maxi≤q<j(C[i][q][→][0] + C[q+1][j][⟵][0]+score(wi,wj)

C[i][j][⟵][0] = maxi≤q<j(C[i][q][⟵][0] + C[q][j][⟵][1])

C[i][j][→][0] = maxi≤q<j(C[i][q][→][1] + C[q][j][→][0])

return [0][n][→][0]

Eisner’s algorithm

Summary

• Eisner’s algorithm is an improvement over
Collin’s algorithm that runs in time O(|w|3).

• The same scoring model can be used.

• The same technique for extending the parser to
labeled parsing can be used, adding O(|L||w|2) to
the run time.

• Eisner’s algorithm is the basis of current
arc-factored dependency parsers.

Eisner’s algorithm

Projectivity

• Eisner’s algorithm, as well as Collin’s algorithm,
builds the tree bottom-up

• They only produce projective trees

• What about non-projective graph-based parsing?

• Based on minimum-spanning tree algorithms

Eisner’s algorithm

Minimum-spanning tree parsing

• Based on graph algorithms to find the minimum
spanning tree

• Often: Chu-Liu-Edmonds algorithm (CLU)

• Directly produces non-projective trees

• First suggested in the MSTparser

• One of the most popular algorithms today

Minimum-spanning tree parsing

• Intuition:

• Score all word pairs in both directions

• Create a fully connected graph with these scores

• Remove all edges going into ROOT

• For each node, greedily keep only the highest-scoring incoming arc

• If this produces a tree: done!

• Otherwise: handle each cycle in the graph:

• Recursively contract cycles, and recalculate incoming weights

Minimum-spanning tree parsing

• Complexity:

• Naive implementation:

• O(n^3):

• At most n recursive calls to contract graph, in each call find
highest incoming edge: n^2

• Efficient implementation:

• O(n^2)

• Tarjan (1977)

• Naturally can produce non-projective trees

Coming up

• March 4: literature seminar 2

• Groups on the web page (note: new groups)

• Supervision in Chomsky+Turing :

• March 6 and March 13

• Final seminar:

• March 25 (NOTE: moved)

• Assignment 3, deadline March 11

• Project report, deadline March 22

