UPPSALA
UNIVERSITET

Graph-based dependency
parsing

Syntactic analysis (5LN455)
2024

Sara Stymne
Department of Linguistics and Philology

Partially based on slides from Marco Kuhlmann

UPPSALA
UNIVERSITET

Arc-factored dependency parsing

UPPSALA

ovesrer Ambiguity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

dobj

subj det pmod
e
I

booked a flight from LA

UPPSALA

ovesrer Ambiguity

Just like phrase structure parsing,
dependency parsing has to deal with ambiguity.

pmod

dobj

T

booked flight from LA

UPPSALA

swversrer Disambiguation

* We need to disambiguate between
alternative analyses.

* We develop mechanisms for scoring dependency
trees, and disambiguate by choosing
a dependency tree with the highest score.

UPPSALA

wvesmer 9COring models and parsing algorithms

Distinguish two aspects:

* Scoring model:

How do we want to score dependency trees?

* Parsing algorithm:
How do we compute a highest-scoring
dependency tree under the given scoring model?

UPPSALA

wwveser 1 he arc-factored model

* Split the dependency tree t into parts py, ..., bn,
score each of the parts individually,
and combine the score into a simple sum.

score(t) = score(pi) + ... + score(pn)

* The simplest scoring model is
the arc-factored model, where
the scored parts are the arcs of the tree.

Arc-factored dependency parsing

UPPSALA

avesrer Examples of classic features

* ‘The head is a verb.

* ‘The dependent is a noun.

e ‘The head is a verb

and the dependent is a noun.

* ‘The head is a verb
and the predecessor of the head is a pronoun.

* ‘The arc goes from left to right.

* ‘The arc has length 2.

Arc-factored dependency parsing

UPPSALA

swersrer— [raining using structured prediction

* Take a sentence w and a gold-standard
dependency tree g for w.

* Compute the highest-scoring dependency tree
under the current weights; call it p.

* Increase the weights of all features
that are in g but not in p.

* Decrease the weights of all features
that are in p but not in g.

Arc-factored dependency parsing

UPPSALA

swersrer— [raining using structured prediction

* Training involves repeatedly parsing (treebank)
sentences and refining the weights.

* Hence, training presupposes an efficient parsing
algorithm.

Arc-factored dependency parsing

UPPSALA

s Higher order models

* The arc-factored model is a first-order model, because
scored subgraphs consist of a single arc.

* An nth-order model scores subgraphs consisting of (at
most) n arcs.

* Second-order: siblings, grand-parents

* Third-order: tri-siblings, grand-siblings

* Higher-order models capture more linguistic structure
and give higher parsing accuracy, but are less efficient

Arc-factored dependency parsing

UPPSALA

owversrer— Parsing algorithms

* Projective parsing
* Inspired by the CKY algorithm
* Collins’ algorithm
* Eisner’s algorithm
* Non-projective parsing:
* Minimum spanning tree (MST) algorithms

* e.g. Chu-Liu-Edmunds algorithm (CLE)

UPPSALA
UNIVERSITET

Collins’ algorithm

UPPSALA

svesrer Colling’ algorithm

* Collin’s algorithm is a simple algorithm
for computing the highest-scoring dependency
tree under an arc-factored scoring model.

* It can be understood as an extension
of the CKY algorithm to dependency parsing.

* Like the CKY algorithm, it can be characterized
as a bottom-up algorithm
based on dynamic programming.

Collins’ algorithm

UPPSALA

owvesrer— Oignatures, Collins’

root

min max

[min, max, root]

Collins’ algorithm

UPPSALA

owversirer INitialization

I booked a flight from LA

[0, 1,1] [1,2, booked] 2,3, 2] [3, 4, flight] [4, 5, from LA]

Collins’ algorithm

UPPSALA

svesmer Adding a left-to-right arc

pmod

v
I booked a flight from LA

[3, 4, flight] [4, 5, from LA]

Collins’ algorithm

UPPSALA

svesmer Adding a left-to-right arc

pmod

v
I booked a flight from LA

3, 5, flight]

Collins’ algorithm

UPPSALA

svesmer Adding a left-to-right arc

min mid max

Collins’ algorithm

UPPSALA

svesmer Adding a left-to-right arc

min max

score(t) = score(t)) + score(tz) + score(l = r)

Collins’ algorithm

UPPSALA

svesmer Adding a left-to-right arc

for each [min, max] with max - min > 1 do
for each 1 from min to max - 2 do
double best = score[min][max][1l]
for each r from 1 + 1 to max - 1 do

for each mid from 1 + 1 to r do

t: score[min][mid][1]

t> score[mid][max][r]
double current = t; + t2 + score(l -» r)
if current > best then

best = current

best

score[min][max][1]

UPPSALA
UNIVERSITET

Collins’ algorithm

Complexity analysis

e Runtime!?

* Space!
for each [min, max] with max - min > 1 do
for each r from min + 1 to max - 1 do
double best = score[min][max][r]
for each 1 from min to r - 1 do
for each mid from 1 + 1 to r do
t1 = score[min][mid][1]

t, = score[mid][max][r]

double current = t1 + t2 + score(r - 1)

if current > best then

best = current

score[min][max][r] = best

mid

max

Collins’ algorithm

UPPSALA

wvesrer Complexity analysis

* Space requirement:

O(Iwl°)

* Runtime requirement:

O(Iwl°)

Collins’ algorithm

UPPSALA

owveser EXtension to the labeled case

* |tis important to distinguish dependencies
of different types between the same two words.

Example: subj, dobj

* For this reason, practical systems typically
deal with labeled arcs.

* The question then arises how to extend
Collins’ algorithm to the labeled case.

UPPSALA
UNIVERSITET

Collins’ algorithm

Smart approach

* Before parsing, compute a table that lists,

for each head-dependent pair (h, d),
the label that maximizes the score of arcs h — d.

* This is guaranteed to be the arcs that could
be used in a highest-scoring tree

* During parsing, simply look up the best label
in the pre-computed table.

* This adds (not multiplies!) a factor of |L||w|?
to the overall runtime of the algorithm.

UPPSALA

wvesmer Eisner’s algorithm

* With its runtime of O(|w/|?), Collins’ algorithm
may not be of much use in practice.

* With Eisner’s algorithm we will be able to solve
the same problem in O(|w]|3).

* Intuition: collect left and right dependents
independently

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

\r

min mid max

In Collins’ algorithm, adding a left-to-right arc
is done in one single step, specified by 5 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min max

In Collins’ algorithm, adding a left-to-right arc
is done in one single step, specified by 5 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

\r

min mid max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min mid max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

UNIVERSITET BaSiC idea

min max

In Eisner’s algorithm, the same thing is done
in three steps, each one specified by 3 positions.

Eisner’s algorithm

UPPSALA

avesrer Comparison

Y

i+l

khAB\ - .

‘

h j

Eisner’s algorithm

UPPSALA

swvesrer Dynamic programming tables

* Collins’:
* [min,max,head]
* Eisner’s
* [min,max,head-side,complete]

* head-side (binary): is head to the left or
right?

* complete (binary:) is the non-head side
still looking for dependents!?

UPPSALA
UNIVERSITET

Eisner’s algorithm

Graphic representation

[min,max,left,yes]

[min,max,right,yes]

[min,max,left,no]

[min,max,right,no]

\

/

UPPSALA
UNIVERSITET

Eisner’s algorithm

Graphic representation

[min,max,left,yes]

[min,max,right,yes]

[min,max,left,no]

[min,max,right,no]

N

—
/—>

~~

UPPSALA
UNIVERSITET

Eisner’s algorithm

Possible operations

\

S
<\

Eisner’s algorithm

UPPSALA

sveser Pseudo code

for each 1 from 0 to n and all d,c do
C[i][i][d][c] = 0.0
for each m from 1 to n do
for each i1 from 0 to n-m do
j = i+m
CIi][J1[—1[1] = maxisq<3j(C[1]1[q][—1[0] + C[g+1][J][—][0]+score(w;, i)
C[i][J1[—]1[1] = maxisq<j(C[1][q][—]1[0] + C[g+1][J][—1[0]+score(wi,w;)
C[i][J1[—1[0] = maxisq<3j(C[1][q]l[—][0] + C[a][JI[—1[1])
C[i1[J1[—1[0] = maxXis<j(C[11[q][—1[1] + CI[Q][J1[—1[0])

return [0][n][—]1[0]

UPPSALA
UNIVERSITET

Eisner’s algorithm

Summary

* Eisner’s algorithm is an improvement over
Collin’s algorithm that runs in time O(|w|3).

* The same scoring model can be used.

* The same technique for extending the parser to
labeled parsing can be used, adding O(|L||w|?) to
the run time.

* Eisner’s algorithm is the basis of current
arc-factored dependency parsers.

Eisner’s algorithm

UPPSALA

oversrer— Projectivity

* Eisner’s algorithm, as well as Collin’s algorithm,
builds the tree bottom-up

* They only produce projective trees
* What about non-projective graph-based parsing!?

* Based on minimum-spanning tree algorithms

UPPSALA
UNIVERSITET

Minimum-spanning tree parsing

* Based on graph algorithms to find the minimum
spanning tree

* Often: Chu-Liu-Edmonds algorithm (CLU)
* Directly produces non-projective trees
* First suggested in the MSTparser

* One of the most popular algorithms today

UPPSALA

o Minimum-spanning tree parsing

* Intuition:

* Score all word pairs in both directions

* Create a fully connected graph with these scores

* Remove all edges going into ROOT

* For each node, greedily keep only the highest-scoring incoming arc
* If this produces a tree: done!
e Otherwise: handle each cycle in the graph:

* Recursively contract cycles, and recalculate incoming weights

UPPSALA

o Minimum-spanning tree parsing

o Complexity:
* Naive implementation:
« O(n3):

* At most n recursive calls to contract graph, in each call find
highest incoming edge: n/2

* Efficient implementation:
¢« O(n"2)
* Tarjan (1977)

* Naturally can produce non-projective trees

UPPSALA

ovesmer Coming up

* March 4: literature seminar 2
* Groups on the web page (note: new groups)
* Supervision in Chomsky+Turing :
* March 6 and March |3
* Final seminar:
* March 25 (NOTE: moved)
* Assignment 3, deadline March | |

* Project report, deadline March 22

