UPPSALA
UNIVERSITET

CKY discussion session

Syntactic parsing
2024

Sara Stymne
Department of Linguistics and Philology

Mostly based on slides from Marco Kuhlmann

UPPSALA
UNIVERSITET

CNF conversion

UPPSALA
UNIVERSITET

Restrictions

The original CKY algorithm can only handle rules that
are at most binary:

C—'Wi,C—’CICZ-

It can easily be extended to also handle unit productions:
C-ow, CoC, C-C (.

This restriction is not a problem theoretically,
but requires preprocessing (binarization) and
postprocessing (debinarization).

A parsing algorithm that does away with this restriction
is Earley’s algorithm (Lecture 6).

UPPSALA

wvesrer [reebank CNF conversion (1)

Probably easiest to solve by a recursive function. XXX represents either
a list or a string

A tree is represented as a list of subtrees, e.g.
[S [NP [PRON they]] [VP [V like] [NP [N snowl]]]]

List contains two strings
e.g.: ["IN", llasll]
return list

List contains two items, string and list
e.g. : ["NP" ["PRP", XXX]]
Contract the two grammar symbols, and remove one list
Apply cnf-method to the resulting tree
return cnf (["NP+PRP", XXX])
List contains three symbols, string, list, list
e.g. ["S", ["NP", XXX], ["VP", XXX]]
Keep as it is, and apply cnf-method to the two lists
return [”S”, cnf(["NP", XXX]), cnf(["VP", XXX])]

UPPSALA

wvesrer [reebank CNF conversion (2)

List contains more than three symbols, string, list,

list, list, ...

e.g. ["S", ["NP", XXX], ["VP", XXX], [".", XXX]]
Keep first two items, create an extra list with
new label to which you give a "new" label.
Apply cnf to the resulting tree

return cnf(["S", ["NP", XXX],
["new-name", ["VP", XXX, [".", XXX]111)

think about the naming and markovization!

List contains something else:
Something has gone wrong!

UPPSALA

awvesrer . CINF Conversion task

* Note a small change in the assignhment from
previous years:

* Instead of changing the list "in-place”, you are
now required to return the new list.

* This change was made as a simplification, since
many students previously struggled with the in-
place conversion

* Please disregard any mention of in-place
conversion that are still in the recordings

UPPSALA
UNIVERSITET

The CKY algorithm — recognition

UPPSALA

wvesrer Overview of the CKY algorithm

* The CKY algorithm is an efficient bottom-up
parsing algorithm for context-free grammars.

* It was discovered at least three (!) times
and named after Cocke, Kasami, and Younger.

* It is one of the most important and most used
parsing algorithms.

Recognition

UPPSALA

swversrer - Recognizing small trees

Recognition

UPPSALA

swversrer - Recognizing small trees

covers all words
betweeni— | and i

Recognition

UPPSALA

wvirser - Recognizing big trees

C-C (G

C, C,

Recognition

UPPSALA

wvirser - Recognizing big trees

Recognition

UPPSALA

swversrer Recognizing big trees

covers all words
between min and max

UPPSALA
UNIVERSITET

Recognition

Questions, CKY recognition

* How do we know that we have recognized
that the input sequence is grammatical?

* How do we need to extend this reasoning
in the presence of unary rules: C = C; !

Recognition

UPPSALA

aveser QuUestions

* What is the signature of a parse tree
for the complete sentence?

* How many different signatures are there?

* Can you relate the runtime of the parsing
algorithm to the number of signatures?

Recognition

UPPSALA

aveser QuUestions

* What is the signature of a parse tree
for the complete sentence?

* [O,n,S]
* How many different signatures are there!
* n2* G

* Can you relate the runtime of the parsing
algorithm to the number of signatures!?

e NN3*@G

UPPSALA
UNIVERSITET

Implementation
CKY recognizer

Implementation

UPPSALA

owvirser Preterminal rules

for each wi from left to right
for each preterminal rule C -> w;

chart[i - 1][1][C] = true

Implementation

UPPSALA

swversrer— BiNAry rules

for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
for each binary rule C -> C; C:
for each mid from min + 1 to max - 1

if chart[min][mid][Ci] and chart[mid][max][C2] then

chart[min][max][C] true

Implementation

UPPSALA

wvesrer Questions, CKY recognizer

* In what way is this algorithm bottom—up!?
* Why is that property of the algorithm important?

* How do we need to extend the code if we wish
to handle unary rules C = C; !

* Why would we want to do that!

UPPSALA

svesrer U nary rules

new bounds!
for each max from 1 to n k///;7

for each min from max - 1 down to 0

// First, try all binary rules as before.

// Then, try all unary rules.
for each syntactic category C
for each unary rule C -> C;

if chart[min][max][Ci1] then

chart[min][max][C] true

Implementation

UPPSALA

svesrer Question, unary rules

This is not quite right.
Why, and how could we fix the problem!?

UPPSALA
UNIVERSITET

CKY parser

Probabilistic parsing

UPPSALA

UNIVERSITET I d ea

* For trees built using preterminal rules:
Apply all rules matching each word

* For trees built using binary rules:
Find a binary rule r and a split point mid such that
b(r) X p(ti) X p(t2) is maximal, where
t; is a most probable left subtree and
t2 is a most probable right subtree.

Probabilistic parsing

UPPSALA

owvirser Preterminal rules

for each wi from left to right
for each preterminal rule C -> w;

chart[i - 1][1][C] = p(C -> wi)

Probabilistic parsing

UPPSALA

swversrer— BiNAry rules

for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
double best = undefined
for each binary rule C -> C: C;
for each mid from min + 1 to max - 1
double t; = chart[min][mid][C:1]
double t; = chart[mid][max][C2]
double candidate = t1 * t2 * p(C -> C1 C2)
if candidate > best then
best = candidate

chart[min][max][C] = best

Probabilistic parsing

UPPSALA

aveser - Question

How should we treat unary rules?

Probabilistic parsing

UPPSALA

s Backpointers

* When we find a new best parse tree,
we want to remember how we built it.

* For each element t = chart[min][max][C],
we also store backpointers to those elements
from which t was built.

* Besides the ordinary chart of floats, we also have
a backpointer chart

Probabilistic parsing

UPPSALA

owvirser Preterminal rules

for each wi from left to right
for each preterminal rule C -> w;
chart[i - 1][1][C] = p(C -> wi)

backpointerChart[i-1][i][C] = (C, wi, i, 1i-1)

Probabilistic parsing

UPPSALA

s Backpointers

double best = undefined

Backpointer backpointer = undefined

if candidate > best then

best = candidate

backpointer = (C, Ci, C2, min, mid, max)

chart[min][max][C] best

backpointerChart[min][max][C] backpointer

Implementation

UPPSALA

oversirer Backtrace

Convenient to use recursion to retrieve the tree!
assume backppointers are tuples:
Preterminal: (C, w, min, max)
Binary: (C, Cl, C2, min, mid, max)
backtrace(bp, bpChart):

if length(bp) == 4: #preterminal rule

return tree for C, w
else if length(bp) == 6 #binary rule

return tree for C, backtrace(left subtree), backtrace(right

subtree)

Implementation

Implementation ideas, Python

defaultdict is a suitable datastructure for charts!
Index the defaultdicts with a tuple (min, max, cat)

pi = defaultdict(float)

bp defaultdict(tuple)
Recognize all parse trees built with with preterminal rules.

Recognize all parse trees built with binary rules.

"S"” 1s not always the top category, the below is a simplification

return backtrace(bp[0, n, "S"], bp);

Probabilistic parsing

UPPSALA

svesmer Assignment |: Lab sessions

* Next week:
* Sara is traveling; no scheduled teaching

* Supervision for assignment |, available by
email

e Lab sessions:

* Monday, Jan 29, 14—15 (after a mini-lecture)

- Monday, Feb 5, 13—15

Probabilistic parsing

UPPSALA

ovesmer Coming up

* Next week: self-studies
* Assignment |

* Watch videos + do exercises for coming lectures

Monday Jan 29 |3-15:

e Mini-lecture + lab
* Next theme:
* Transition-based dependency parsing
* Recorded lectures and exercises are available in Studium

* Lecture Wednesday Jan 31,8-10 (NOTE!)

Seminar |: Wednesday February 7, 9-12

* Groups+times will be posted on the web page

UPPSALA
UNIVERSITET

Probabilistic parsing

Assignment |: CKY parsing

* Tips:

During development: use print statements to make
sure your code does what you think it should

Use a small test set, and possibly a small grammar
during development. The parser is slow

Start on the assignment now! Do not leave it until

the last week!

Come to the lab sessions and ask questions!

Don’t be afraid to contact me for help!

Probabilistic parsing

UPPSALA

owvesrer Assignment |: small bug

* Small issue with the debugging code for CNF
* Line 42:

e print("Output: " + str(dumps(tree)), file=stderr)

* Change it to:

e print("Output: " + str(dumps(conv tree)), file=stderr)

* Updated in the code to download

