
Collaborative development of annotation guidelines
with application to Universal Dependencies

Sampo Pyysalo, Filip Ginter

Department of Information Technology
University of Turku, Finland

sampo@pyysalo.net, filip.ginter@utu.fi

Abstract
We introduce an online linguistic annotation guideline development system that supports simple authoring, visualization of
complex structured annotation, version control, and rich collaboration features. The system is presented in the context of a project
aiming to develop universally applicable treebank annotation guidelines and apply them to a broad range of languages. The
system is open source and available from http://spyysalo.github.io/annodoc/, and the Universal Dependencies
documentation is available from http://universaldependencies.github.io/docs/.

1. Introduction
The development and maintenance of comprehensive, up-
to-date guidelines with detailed examples is a challenging
but necessary part of any larger linguistic annotation effort.
Web-based document management systems have many po-
tential benefits for collaboration and access, but there is a
lack of solutions that combine ease of editing with explicit
support for annotation guideline development.

The Universal Dependencies (UD) project is a collabora-
tive effort building on Stanford Dependencies (de Marneffe
et al., 2006; de Marneffe et al., 2014), Google universal
part-of-speech tags (Petrov et al., 2012), the Interset mor-
phosyntactic tagsets (Zeman, 2008), and related recent pro-
posals (McDonald et al., 2013; Tsarfaty, 2013; Rosa et al.,
2014) to develop universally applicable treebank annotation
guidelines and to apply these to create cross-linguistically
consistent treebank annotation for many languages. At
present, the project involves members from more than 10
institutions and targets 16 languages. Collaboration is car-
ried out almost exclusively online.

To support the needs of the UD effort, we combined ex-
isting and newly developed components into a novel guide-
line development system that provides simple authoring, vi-
sualization of complex structured annotation, version con-
trol, and rich collaboration features.

2. Features
The core function of the introduced system is to take plain
text-like documents that include annotation examples in
easy-to-write formats such as the Stanford Dependency
(SD) format, and to generate corresponding web pages with
vector graphics-based annotation visualizations (Figure 1).
The system thus allows the source documents to remain
simple and removes the need for authors to be familiar with
technologies such as HTML, SVG and JavaScript.

To facilitate collaboration between multiple authors and
to organize different versions of developing guidelines, the
system is implemented within a distributed version con-
trol system that tracks changes and resolves any conflicts
that may arise from two or more editors working on the
same document. The generation of the web documents

from the source is then automated so that a new version
of the guidelines is automatically published whenever the
version-controlled source is updated.

Other properties of the system include

• Online editing integrated with version control
• Full Unicode, supporting any language and writing

system
• Inline HTML support, for complex source documents
• Basic scripting facilities, for e.g. automating docu-

ment listings
• Fully configurable visualization with support for

nearly any form of text annotation
• Multiple annotation formats
• Issue tracking and discussion features
• Compatibility with browser-based export to PDF

3. Implementation
We next briefly present the technologies used to implement
the system.

Git version control system with a focus on distributed
development (http://git-scm.com/). Provides re-
vision management, conflict resolution, etc.

GitHub web-based hosting service for Git repositories
(http://github.com/). Provides storage, online edit-
ing, and facilities for issue tracking and discussion.

Markdown plain text-based document format emphasiz-
ing readability and ease of writing, designed for automatic
conversion into HTML (http://daringfireball.
net/projects/markdown/).

Jekyll static website generator that supports Markdown
and the templating and scripting language Liquid, generat-
ing HTML documents (http://jekyllrb.com).

Scalable Vector Graphics (SVG) an XML-based for-
mat for two-dimensional graphics, supported by modern
browsers.

BRAT an online tool for annotation visualization and
editing (http://brat.nlplab.org) (Stenetorp et al.,
2012). Generates SVG-based annotation visualizations.

http://spyysalo.github.io/annodoc/
http://universaldependencies.github.io/docs/
http://git-scm.com/
http://github.com/
http://daringfireball.net/projects/ markdown/
http://daringfireball.net/projects/ markdown/
http://jekyllrb.com
http://brat.nlplab.org


Figure 1: Processing from Markdown input into document with visualizations.

The key processing stages are illustrated in Figure 1. In
brief, the source documents are formatted as Markdown ex-
tended with visualizations (e.g. in the SD format). These
documents are kept in a Git repository that can be ac-
cessed either directly or via GitHub online editing facili-
ties. On any update to the source, Jekyll is executed to gen-
erate (X)HTML, attaching visualization-related JavaScript
code, and the resulting documents are made available on-
line. When any of these documents are opened in a browser,
our custom JavaScript component executes, replacing ele-
ments with visualizable content with embedded BRAT and
the appropriate input. Finally, the embedded BRAT client
runs in the browser to generate the SVG corresponding to
the visualization, creating the final document.

We implemented new functionality to allow client-
side embedded BRAT to visualize annotations in the SD,
CoNLL-X and CoNLL-U formats in addition to the na-
tive .ann format of the tool. We additionally implemented
automatic BRAT embedding and visualization, eliminating
the need for document authors to write JavaScript to em-
bed annotation visualizations. Excepting for GitHub, all
of the used technologies are open source. Further, the use
of GitHub could be replaced with an open source system
providing similar functionality, such as GitLab (http:
//gitlab.com).

4. Universal Dependencies
The UD project for which the documentation system was
originally developed also serves as a demonstration of the
scalability of the system in supporting a collaborative ef-
fort involving 20 contributors working on treebanks for a
number of languages whose documentation is tightly in-
terlinked. The UD project released the first stable version
of its general guidelines on October 1st, 2014, defining 17
POS tags building on the Google universal tagset, 17 fea-
tures using the Interset inventory, a 40 dependency relation
variant of the universal Stanford Dependencies, and a new
CoNLL format extension, CoNLL-U. Work is now focus-
ing on creating language-specific annotation guidelines and
converting existing treebanks for various languages to the
universal standard, using resources such as the English Web
Treebank (Petrov and McDonald, 2012), the Turku Depen-
dency Treebank (Haverinen et al., 2013), and the Swedish

Treebank (Nivre and Megyesi, 2007). A first release of tree-
bank data, aiming to cover at least 10 different languages,
is planned for January 2015.

In addition to extensive documentation for the univer-
sal POS tags, features and dependency relations, initial
drafts of language-specific documentation for English and
Finnish have so far been introduced using the documenta-
tion system. In total, these sets of documentation currently
consist of approximately 40,000 words as well as 386 vi-
sualized annotation examples: 218 for UD, 91 for English,
and 77 for Finnish. As of this writing, the system is further
set up with templates for language-specific documentation
for Basque, Bulgarian, Czech, French, German, Greek, He-
brew, Hungarian, Irish, Italian, Korean, Persian, and Span-
ish. These templates cover in total over 1500 markdown
pages, which can be converted into HTML in a few minutes
on a standard desktop machine. The system can thus scale
to large documentation efforts also in terms of its computa-
tional efficiency.

5. Conclusions
We have introduced a distributed guideline development
and documentation system, addressing the current lack of
an open-source, user-friendly, web-based solution. Being
deployed at GitHub, the system also allows contributions
from third parties in a controlled fashion and protection
against any form of data loss. Although initially imple-
mented for the Universal Dependencies effort, the system is
fully general and can be readily used in other projects and
for forms of annotation other than dependency syntax. The
system supports a range of formats allowing annotations
to express arbitrary text span annotations and any relation
structure, and can thus be readily applied to named entity
recognition, chunking, coreference, relation extraction, and
event extraction tasks, among others.

Acknowledgements
This paper builds on joint work with Jinho Choi, Tim
Dozat, Yoav Goldberg, Jan Hajič, Christopher Manning,
Marie-Catherine de Marneffe, Ryan McDonald, Joakim
Nivre, Slav Petrov, Natalia Silveira, Reut Tsarfaty, and Dan
Zeman.

http://gitlab.com
http://gitlab.com


References
Marie-Catherine de Marneffe, Bill MacCartney, and

Christopher D Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC), volume 6,
pages 449–454.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia Sil-
veira, Katri Haverinen, Filip Ginter, Joakim Nivre, and
Christopher D Manning. 2014. Universal Stanford De-
pendencies: A cross-linguistic typology. In Proceed-
ings of the 9th International Conference on Language
Resources and Evaluation (LREC), volume 14, pages
4585–4592.

Katri Haverinen, Jenna Nyblom, Timo Viljanen, Veronika
Laippala, Samuel Kohonen, Anna Missilä, Stina Ojala,
Tapio Salakoski, and Filip Ginter. 2013. Building the
essential resources for finnish: the Turku Dependency
Treebank. Language Resources and Evaluation, pages
1–39.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló,
and Jungmee Lee. 2013. Universal dependency annota-
tion for multilingual parsing. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 92–97.

Joakim Nivre and Beata Megyesi. 2007. Bootstrapping a
swedish treebank using cross-corpus harmonization and
annotation projection. In Proceedings of the 6th Interna-
tional Workshop on Treebanks and Linguistic Theories,
pages 97–102.

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 shared task on parsing the web. In Notes of the
First Workshop on Syntactic Analysis of Non-Canonical
Language (SANCL), volume 59.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of the
Eight International Conference on Language Resources
and Evaluation (LREC), pages 2089–2096.

Rudolf Rosa, Jan Mašek, David Mareček, Martin Popel,
Daniel Zeman, and Zdeněk Žabokrtský. 2014. Ham-
leDT 2.0: Thirty dependency treebanks stanfordized. In
Proceedings of the 9th International Conference on Lan-
guage Resources and Evaluation (LREC), pages 2334–
2341.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko
Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012.
BRAT: a web-based tool for NLP-assisted text annota-
tion. In Proceedings of the Demonstrations at the 13th
Conference of the European Chapter of the Association
for Computational Linguistics (EACL), pages 102–107.

Reut Tsarfaty. 2013. A unified morpho-syntactic scheme
of stanford dependencies. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Lin-
guistics (ACL), pages 578–584.

Daniel Zeman. 2008. Reusable tagset conversion using
tagset drivers. In Proceedings of the Sixth Interna-

tional Conference on Language Resources and Evalua-
tion (LREC), pages 213–218.


	Introduction
	Features
	Implementation
	Universal Dependencies
	Conclusions

