Abstract

With massively parallel corpora of hundreds or thousands of translations, it is possible to automatically perform typological studies of language structure using very large language samples. I investigate the domain of word order using multilingual word alignment and annotation transfer of a corpus with 1144 translations of the New Testament. Results are encouraging, with 85% to 95% agreement between the automatic system and the manually created World Atlas of Language Structures (WALS) for a range of different word order features.

1. Introduction

I have previously studied methods for multilingual word alignment of massively parallel corpora with over a thousand translations (Östling, 2014). In essence, the method developed uses Gibbs sampling in a Bayesian model to learn two things: a common “interlingua” representation of the text, and alignments from this representation to all of the individual translations.

One question left unanswered in the previous study was why one would want such a multilingual word alignment. There has been previous research on using massively parallel texts for investigations in linguistic typology, see for instance the special issue introduced by Cysouw and Wälchli (2007). Here, I present another application to linguistic typology: investigating word order features.

2. Method

The first step is to compute an interlingua alignment of the corpus, as described in my earlier work (Östling, 2014). Here, I use the same New Testament corpus, with 1144 translations in 986 different languages (some languages having multiple translations).

Second, the ten English translations are part-of-speech (PoS) tagged using the Stanford Tagger (Toutanova et al., 2003), converted to the Universal Part-of-Speech Tagset of Petrov et al. (2012), and dependency parsed with MaltParser (Nivre et al., 2007) trained on the Universal Dependency Treebank (McDonald et al., 2013) using MaltOptimizer (Ballesteros and Nivre, 2012).

Third, PoS and dependency annotations were transferred to the interlingua representation through direct multi-source projection. Given the fact that I use an alignment model based on the simplistic IBM Model 1, on a relatively short text (less than 8000 verses), a high amount of alignment errors is to be expected. Therefore, a very aggressive filtering scheme was used: only dependency links which are projected from at least 75% of source texts were included. In this way, alignment errors, divergent translations and sentences that are difficult to parse are excluded. This severely limits recall, but is acceptable since even a few tens of examples of each grammatical relation are usually sufficient to tell which ordering is dominant in a particular language.

Some experiments were performed using both German and English, with similar but somewhat worse results, possibly due to the fact that the interlingua was initialized with an English translation, and so is somewhat more easily alignable with English than with German.

Given the information available at this point, it is simple to compute which ordering of words in e.g. a verb-object relation is most frequent in a language. If multiple translations exist for a language, counts are aggregated per language in order to compare to WALS. Of course, comparing different translations in the same language could be an interesting project as well.

3. Experiments

WALS, the World Atlas of Language Structures (Dryer and Haspelmath, 2013), contains classifications of languages according to a large number of structural features. I will focus on five of these, summarized in table 1 along with the agreement between the algorithm and WALS, for the subset of languages that are present both in the relevant WALS chapter and the New Testament corpus. Languages where WALS gives an option other than one of the possible permutations (e.g. that a language does not have adpositions, or that there is no dominant verb-object order) are excluded from the counts.

3.1 Results

First of all, we can see that the agreement between the algorithm’s output and the hand-classified WALS entries is high, in all cases much higher than with either the chance or the most-common-category baselines. The lowest agreement is obtained for chapter 81A (verb/subject/object), which expected since there are six possible permutations, as opposed to two for the other features.

It is reasonable to expect that languages more dissimilar to English, and therefore more difficult to transfer English annotation to, would obtain less reliable results. Possibly for this reason, agreement seems to be lower for uncommon word orders, such as object-subject-verb (OSV), although there are too few examples of these to draw any solid conclusions.
Nevertheless, the strong results in spite of a large and diverse sample of languages indicate that the approach is feasible for exploratory large-scale word order investigations. In addition, the output contains not only a hard classification into word order types, but also a measure of how strong this tendency is and which alternative word orders are also common. There is no easy way of automatically evaluating this aspect of the data, but Bernhard Wälchli (p.c.) informs me that results look reasonable for a manually evaluated set of languages.

3.2 HMM alignment

I have repeated the experiment using an extension of the basic alignment model (Östling, 2014) with a Hidden Markov Model (HMM) distortion model, akin to Vogel et al. (1996). The alignments are, as expected, of much higher quality than the original Model 1-based algorithm when evaluated on the translations with Strong’s numbers (Östling, 2014, section 4.2). Surprisingly, there was a much greater disagreement with WALS.

The reason for this counterintuitive result seems to be that the HMM-based alignments contain a bias towards the English word order, which results in the English feature values (subject-verb-object, adjective-noun, prepositions) incorrectly being predicted for many languages.

4. Future directions

There are many other structural properties of languages that could be investigated with high-precision annotation transfer in massively parallel corpora, not just regarding word-order but also within in domains such as negation, comparison and tense/aspect. While there are limits to the quality and types of answers obtainable, the main advantages of the kind of method presented here is that it provides quick, quantitative answers capable of guiding more thorough typological research.

On the technical side, there are various ways to extend the basic alignment algorithm, such as adding fertility parameters or using symmetrization methods. These may be able to improve accuracy, although section 3.2 suggests that this is by no means certain. It would also be useful for many typological investigations to align at the morpheme level, rather than the word level.

Table 1: Agreement between the algorithm and WALS. \(N \) is the number of languages that are both in the relevant WALS chapter and in the New Testament corpus. All features are binary except 81A, which can take six values.

<table>
<thead>
<tr>
<th>WALS</th>
<th>Agreement</th>
<th>(N)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81A</td>
<td>85.7%</td>
<td>342</td>
<td>order of verb, subject and object</td>
</tr>
<tr>
<td>82A</td>
<td>90.4%</td>
<td>376</td>
<td>order of verb and subject</td>
</tr>
<tr>
<td>83A</td>
<td>96.4%</td>
<td>387</td>
<td>order of verb and object</td>
</tr>
<tr>
<td>85A</td>
<td>95.1%</td>
<td>329</td>
<td>order of adposition and noun (pre/-postposition)</td>
</tr>
<tr>
<td>87A</td>
<td>88.0%</td>
<td>334</td>
<td>order of adjective and noun</td>
</tr>
</tbody>
</table>

References

