
 1

���������
	
�����

��
����� ����� � �������
���������
	
�������� !� "�#%$'&�&)(� "�*,+.-�/�01-�+.2�03+.-547698:8<; � 6�=!+:/�0>-�?A@B8
8.CED

FG�
 ���H��
��I
J% !�7��K%LGJ��
� M ���ON�P Q�P �
FG�
 ���H��
��I
J% !�7������ �� $RDTS�=�*U0 ;V0>*,+.W�038.-58<;XWZY�=[6�=�\�]�016�=T/^?�6�+._`_[+.6a*,Y�=�*,b.0>-�?A_[+.*,Y�01-�=�6�c

deK�LfJ7�
�g��
ih7I
j���k � �

l ��monXI�kqpr����kqh����7ks��J% �� $t-�-�+u"�v:?�2
+.C>Cxwy=�01-�z�M'=TS�+.6!W�_[=�-�W{8<; � 01-�?�]�0ED�W�01*,D!zi|}S�S�DT+.CE+
|'-�012
=~6�D�01WZc�z���8:� Q���� z�" � �
Q��7��� |}S�S�DT+.CE+:z�"��}=!/�=�-
� _'+.0>C1�
+.-�-�+.�^C10>-�? P]�] P D!=

� K��������~��kq� $t-�-�+u"�v:?�2
+.C>Cxwy=�01-
�%���B�~���!�
	:�}�u
!
!��	.�
� &�+
c^w�]�/�D!8.-�z�$`-�WZ8.-�0E8u"�+.-�;�01C103S�S�8
�y�
���G�����%k ��69+._`_[+.6a*,Y�=�*,b.01-�? z�D!S�=~*�0 ;V0>*�+�W�0E8�-�z�698.��]�D~W�-�=!D!D!z�]�-�6�=!D~W�6!0>*�WZ=!/AW�=T��W�z

=�6!6�8�6aW�c�S�=!DTz�=�6!6�8.6i*�8�6!6�=�*UW�038.-�z�S�=�6 ;U8.6!_'+�-�*,=

� J7ks����I
	:� @�Y�=a+.01_�8<;XWZY�0ED[WZ+:D!bu03D[W�87D!S�=�*U0 ;Uc^+�?�6�+._y_'+.6a*,Y�=�*,b.0>-�?A_'+.*,Y�01-�=�69c
;�8.6i"�*,+.6T6!0E=a+�-�/AWZ8u0E/�=~-�W�0 ;Uc^+.-5+:S�S�6�8:S�6!03+.W�=gW�=�*,Y�-�8.CE8
?�c P @BY�69=!=
01-�2
=!D�W�0E?�+.W�0E8.-�D[�}=�6�=g*�+�6!6!0E=T/^8]�W�z�0 P = P =!��S�CE8.69+.W�0>2
=[��8�6�b�8.-�W�Y�=
#� [&�&X0E=�;V6�+:?�_[=�-�W{+.-�+.C3c�D�0EDi+:S�S�6�8:+.*,Y�;U8.6aM'+�-�03D!Y�z�+.-�/A"���=T/�0ED!Y�z
+.-�/^8.-�"�*�+�6!#%Y�=~*�b
z�W�Y�=[*,Y�+.6!W � �!+:D!=T/AW�=!D�W¡2
=�6�D�038.-58<;)+7?�6�+._`_[+.6
,Y�=�,b:=�6:;U8.6a"���=T/�0ED!Y P (!-^+
/�/�01W�038.-�z�+.-�01-�\�]�016�c^8.-�*,8._y_'=�6!*U03+.C
D!8<;�W��}+.6�=[�}+:D[_[+:/�= P (�W¡��+
D[*,8.-�*�C>]�/�=!/AW�Y�+.W¡#� [&�& 0E=g��0>W�YAW��}8
8:S�W�038.-�D.;�8�6¡?�6�+._y_'+.6a*,Y�=�*,b.0>-�?�z�0 P = P #) '&)&503=.;V69+:?�_'=�-�W.+.-�+.CEc�D�03D
+:S�S�6�8:+�*�YA¢ ;�8.6iM'+.-�0EDTY^+.-�/^£`8.6!�}=!?�03+.-�¤�+.-�/A"�*,+.6!#¥Y�=�*,bu¢ ;U8.6
"���=!/�03D!Y�¤}�'01C>CxD!=~6!2
=a+:D[WZY�=[�!=!D�W¡W�=�*,Y�-�8.CE8
?�cA��+
D!=.;�8�6aW�Y�=["�*,+.6!6T0E=
S�01C38.W P

 2

Executive Summary

The main objective of this task is to specify the demands on the functionality of the Scarrie
grammar checking machinery and to decide on a technology baseline in accordance with this
specification.

Even though the focus of this task is on grammar checking, its integration with the operation
of the spell checker is vital and has to be given due attention. Accordingly, three alternatives
for a technology baseline for combined spell checking and grammar checking were identified
and evaluated:

1. CORRie for word checking and CORRie fragment analysis for grammar checking
2. CORRie for word checking and ScarCheck for grammar checking
3. External commercial software

Three different investigations were carried out, i.e. explorative work on the CORRie fragment
analysis approach for Danish (see Paggio, P. 1998) and Swedish (see Wedbjer Rambell , O.
1998), and on ScarCheck, the chart-based test version of a grammar checker for Swedish (see
Sågvall Hein, A. 1998a, 1998b). In addition, an inquiry on commercial software on the market
was made.

For the identification of commercial software for combined spell checking and grammar
checking a questionnaire was compiled. It also serves as a software specification and as a
basis for comparing and evaluating commercial software with the two CORRie alternatives.

The results of the inquiry were merged into the questionnaire together with the results of the
investigations of CORRie fragment analysis and ScarCheck (see Sågvall Hein et al. 1998).
From these data it was concluded that CORRie with two options for grammar checking, i.e.
CORRie fragment analysis (for Danish and Norwegian), and ScarCheck (for Swedish) would
serve as the best technology baseline for the Scarrie pilot.

 3

A specification of the required grammar checking machinery

Anna Sågvall Hein

Uppsala university, Depar tment of L inguistics

16 June 1998

The main objective of this task is to specify the demands on the functionality of the Scarrie
grammar checking machinery and to decide on a technology baseline in accordance with this
specification. In pursuing this goal three different investigations were carried out, i.e.
explorative work on the CORRie fragment analysis approach for Danish (see Paggio, P. 1998)
and Swedish (see Wedbjer Rambell , O. 1998), and on ScarCheck, a chart-based test version
of a grammar checker for Swedish (see Sågvall Hein, A. 1998a, 1998b).

In addition, an inquiry on commercial software on the market was made. The results of the
inquiry were merged into a common questionnaire together with the results of the
investigations of CORRie fragment analysis and ScarCheck. From these data it was concluded
that CORRie with two options for grammar checking, i.e. CORRie fragment analysis (for
Danish and Norwegian), and ScarCheck (for Swedish) would serve as the best technology for
the Scarrie pilot.

Introduction

Even though the focus of this task is on grammar checking, its integration with the operation
of the spell checker is vital and has to be given due attention. Accordingly, three alternatives
for a technology baseline for combined spell checking and grammar checking were identified
and evaluated:

1. CORRie for word checking and CORRie fragment analysis for grammar checking
2. CORRie for word checking and ScarCheck for grammar checking
3. External commercial software

Thus three different investigations were carried out, i.e. explorative work on the CORRie
fragment analysis approach for Danish (see Paggio, P. 1998) and Swedish (see Wedbjer
Rambell , O. 1998), and on ScarCheck, a chart-based test version of a grammar checker for
Swedish (see Sågvall Hein, A. 1998a, 1998b). In addition, an inquiry on commercial software
on the market was made.

For the identification of commercial software for combined spell checking and grammar
checking a questionnaire was compiled. It also serves as a software specification and as a
basis for comparing and evaluating commercial software with the two CORRie alternatives.

The results of the inquiry were merged into a common questionnaire together with the results
of the investigations of CORRie fragment analysis and ScarCheck (see App. 2). It captures
and summarises the data on which the conclusions regarding technology baseline are drawn.

 4

Software specification in terms of a questionnaire

The questionnaire was produced in two versions, a general version with some basic questions
for a first run (see App. 1), and a more detailed version with follow up questions (see App.2).
It comprises questions on word checking as well as on grammar checking. Below we will
focus on those aspects of the software specification that are vital in grammar checking and in
the integration of spell checking and grammar checking. Before that, however, we will report
on the first run of the inquiry of commercial software.

An inquiry on software for combined spell checking and grammar
checking, 1st run
A list of companies to approach was compiled jointly by the partners and responsibiliti es were
distributed:

Target companies and responsible par tners:

Good Language Software WF

Inso WF

Inxight CST

Le Correcteur WF

LingSoft UU

Microsoft (Word 7/8) WF

MorphoLogic UU

RabbitSoft WF

Skribent SvD

Soft-Art WF

Tansa SvD

Terracom WF

Results of the first run

Company Partner Response

Good Language Software WF 1

Inso WF 1

Inxight CST 1

Machina Sapiens (Le Correcteur) WF 2

LingSoft UU 1

Microsoft (Word 7/8) WF 0

MorphoLogic UU 2

 5

RabbitSoft WF 0

Skribent SvD 1

Soft-Art WF 1

Tansa SvD 0

Response:

0: no answer,

1: NO to one or more of the first four fundamental questions

2: YES to the first four fundamental questions

Terracom could not be identified as a language engineering company and was left out.

Machina Sapiens gave YES as an answer to the first four questions; however, they seem to
have a misunderstood question No 2, focusing on robustness. The answer to this question is
YES, even though the information given on the homepage of the company clearly states that
the grammar checker basis its operation on complete parsing. (This is in accordance with the
conclusions made by UU in the work on WP 6.1, A study of three commercial grammar
checkers, Le Correcteur from Machina Sapiens being one of the grammar checkers that were
examined.)

LingSoft and Inxight are both well -known providers of f inite-state technology, a technology
that has been suggested several times in the course of the project. Both companies also agree
that finite state technology should be interesting as a basis for spell checking and grammar
checking. However, none of the companies may provide a commercial software today with
capacities for grammar checking.

It was concluded from the results of the first run that only the Hungarian company
MorphoLogic was a relevant target for follow-up questions. (The full documentation of the
exploration of the first run is available at UU.)

An inquiry on software for combined spell checking and grammar
checking, 2nd run

2nd run comprises only three alternatives, i.e. MorphoLogic and the two CORRie alternatives.
In other words, there are two alternatives for a spell checking software, i.e. MorphoLogic and
CORRie, and three alternatives for a grammar checking software. A full account of the results
of the investigation is presented in App. 2.

In evaluating the two spell checking alternatives we will not make a complete comparison of
the answers to the questionnaire here; we only bring up some fundamental aspects of
MorphoLogic that we find make it unsuitable as a spellchecker for Scarrie, i.e.

1. Vague data on resources required for conversion to another language (Is there a
version for another language?)

2. Test version for Hungarian only (How can we make a test, not knowing Hungarian?)

3. Stem and aff ix dictionary (As motivated in TA, Scarrie will be based on form
dictionaries.)

 6

4. Vague answer to questions concerning correction principles

5. No performance figures

The main goal of this task is to specify software for grammar checking, and here we will
concentrate on those aspects of the investigation that we find fundamental in grammar
checking and in the integration of grammar checking and spell checking.

Robustness

A grammar checker for unrestricted text must be able to cope with incomplete grammatical
data; complete parsing is no viable alternative. Two alternatives for ensuring parsing
robustness were identified, fragment analysis and partial parsing. (The answers given by
MorphoLogic to this issue were vague.)

Fragment analysis and shallow parsing in the CORRie framework

The CORRie parser was originally designed for complete parsing (Vosse 94). This means
that for each input the parser has to build some structure spanning it from beginning to end.
However, as suggested by Vosse (email communication, February 1998), a sentence may be
analysed in terms of fragments that are not fully specified, rather than in traditional
constituents. A shallow parse may thereby be generated.

"Although a full sentence parse must be produced, rules may be written covering a sentence in
fragments. Hereby it is possible to focus on the internal structure of certain syntactic elements
leaving other elements unanalysed or unidentified." (App. 2: 2.1) This approach has been
explored for Danish (Paggio 1998) and Swedish (Wedbjer Rambell 1998). Errors in NPs have
been in focus of both investigations.

Error recognition in CORRie is carried out by means of feature overriding mechanism built -in
in the system, and by means of the application of error rules, i.e. rewrite rules rules explicitl y
describing incorrect patterns. Both strategies were successfully explored within the CORRie
fragment approach.Being robust, the system does not crash when a parse is not produced; an
error may be overlooked but that's all there is to it.

The conclusions of the two investigations of the CORRie fragment analysis approach differ
slightly between the two languages:

Conclusions regarding CORRie fragment analysis for Danish

"To conclude, these experiments show that although a complete parse spanning over the
whole sentence must be generated for CORRie to be able to recognise and correct an error,
this parse need not be too complex or computationally expensive." (Paggio 1998).

The Danish experiment with CORRie was directed towards NPs only.

Conclusions regarding CORRie for Swedish

 7

"It is quite possible to capture agreement errors in NPs of different syntactic complexity using
the fragment analysis approach. The minor test presented in this report shows acceptable
results. However, many agreement errors may not be recognised due to lexical ambiguity. [...]

To expand the grammar to embrace erroneous verb sequences and problems at clause level
such as missing main verbs in the fragment analysis framework would be much more diff icult
to achieve compared to agreement errors in noun phrases." (Wedbjer Rambell 1998)

Partial parsing by means of ScarCheck

In the ScarCheck model robustness is ensured via partial parsing and the application of local
error rules. By partial parsing we understand an approach where there need not be an analysis
spanning the entire input. Only certain types of constituents are analysed, such as NPs, PPs,
APs, AdvPs, and VGs (the verbal core of the VP). The constituent analysis is also robust in
itself in that it allows for feature relaxation for catching feature violations, such as agreement
errors. Typically, there are no sentence rules. Segments that are not covered by grammar rules
are stepped by in the analysis. As opposed to the fragmens in the CORRie fragment analysis,
unanalysed segments need not be foreseen in the grammar.

The rules are formulated in a procedural formalism and invoked bottom-up at the recognition
of lexical categories. For instance, the recognition of a determiner leads to the invocation of
an NP-rule (designed for the recognition of NPs introduced by determiners). Local error rules
are formulated in the same formalism as the grammar rules and invoked in the same manner.
Whereas the partial parsing rules generate linguistic descriptions that may be used by other
rules in the analysis, the application of the local error rules generates descriptions of
erroneous fragments of that are not to be used by other rules.

ScarCheck has only been applied to Swedish. It handles errors in NPs, APs, PPs, VGs, and at
clause and sentence level (App. 2: 11.3 - 11.6) .

Err or coverage

Error coverage is an important aspect when it comes to deciding on a grammar checking
technology.

The Scarrie pilot is not aiming at handling all grammatical error that may occur. Only some
types will be covered, i.e. a subset of those that were identified in WP 2 (see DEL 2.1.1.2,
DEL 2.1.2.2, DEL 2.1.3.2). The filtering process will t ake error type and error recognition
feasibilit y into account (see DEL 6.2.x), in addition to frequency and user requirements (User
requirements - Language and Typography, Scarrie common workspace, Scarrie Users).

For an instance, according to the Swedish error data base, errors in the NP dominate (40%),
followed by verb valency errors (17%), errors in the PP (11%), and errors in the VG (8%), see
further DEL 2.1.3.2, p. 19). The handling of valency errors is outside the scope of the Scarrie
project, the main reason being insuff icient resources in terms of manpower. (Defining and
including valency frames into the dictionary to the extent that would be required for handling
such error types in a general fashion would need a project of its own.) User requirements
include errors in the NP, errors in the VG, and several types of errors at clause and sentence
levels. Consequently, the Scarrie grammar checker for Swedish aims at covering errors in the

 8

NP, errors in the AP, errors in the AdvP, errors in the VG, some errors in the PP, and several
error types at clause and sentence level.

As regards Danish and Norwegian, apart from NP agreement errors, the set of error types to
be covered has so far not been finalised.

MorphoLogic reports no handling of agreement errors ("Agreement is not a criti cal problem
in Hungarian", App 2: 11.1). It is diff icult to see how agreement errors might be captured in
the MorphoLogic framework, because no concrete answers to the questions concerning
grammar formalism were given ("local grammar rules", App.: 11) and no ill ustrative example
of the formalism was presented.

Err or correction

The CORRie grammar checker generates corrections for those errors that are recognised as
feature violation errors. It looks up the incorrect word in the dictionary, finds its lemma, and
searches for an alternative word form with the correct set of features. If there are several
candidates, the program chooses the alternative with the shortest edit distance to the erroneous
word. No correction is generated for errors recognised by means of local error recognition
rules or if the correct word form is missing in the dictionary.

So far, ScarCheck comprises no error correction mechanism. An implementation of the same
principles for error correction as those used in CORRie presents no general problems.

Cooperation with spell checker
For eff iciency, space, and maintenance reasons, it is important that a combined program for
spell checking and grammar checking uses the same dictionary for both functions, and that
dictionary search is carried out only once (see Sågvall Hein, A. 1997).

This is the case in CORRie. The main dictionary contains explicit information required for
spell checking, and information required for the syntactic processing in terms of syntactic
codes. Before this information may be used by the parser the codes have to be translated into
the linguistic formalism (feature structure) used by the parser.

Integrating ScarCheck into the CORRie framework

ScarCheck is a viable alternative to the CORRie fragment analysis only insofar as it can be
integrated into the CORRie framework, or with another powerful spell checker. In
comparison with other spell checking software on the market, CORRie stands out as a rich
and flexible alternative (see App. 2). Because of this, and because of the good results
achieved with ScarCheck with respect to the Swedish target error types, work was initiated on
integrating ScarCheck into the CORRie system, in spite of the diff iculties that had been
foreseen (Music, B. 1997).
Interfacing spell checking and syntactic parsing in CORRie, basically, amounts to forwarding
and translating the syntactic codes that are associated with the words as they are recognised
by the spell checker. If a new parser is inserted these codes have to be translated to the format
used by that parser. Most words are recognised as a result of successful search in the
dictionary (main dictionary of one word units, and multiword dictionary of phrasal words),

 9

and the syntactic codes may be retrieved from there. However, for words outside the
dictionary, that are recognised by means of rules (e.g. compounds, proper nouns, numerical
expressions) or by other means (signs of punctuation) syntactic codes have to be generated
accordingly.

In integrating the ScarCheck grammar checker into the CORRie platform several technical
problems had to be solved concerning the proper generation and forwarding of codes
representing syntactic ambiguities, and of codes for words outside the main dictionary. As
regards the concrete steps that were taken in the integration process, see App. III . Solving
these problems was just as important for a successful realisation of the CORRie fragment
analysis approach. Integrating a new parser into CORRie is from now on a straightforward
operation that may be realised via the exchange of the translation table.

ScarCheck, has two basic modules, a chart parser and a chart scanner. The parser builds as
much structure as the grammar allows, and the scanner traverses the chart collecting and
reporting errors (Sågvall Hein 1998a). Below we present an example of the input to the
ScarCheck chart parser forwarded from the CORRie spell checker.

 ¦
Folk väntade förmodligen på det större maskinerna och traktorerna [People were
probably waiting for the bigger machines and tractors]

(sp '((NNNXIB) (VBARM PCPXSDB) (ABX) (PR ABX) (PNNSZ
NNNSIB ALNSD) (AVXXXBC) (NNUPDB) (CN) (NNUPDB)))

The chart parser is invoked by means of a function call "sp" and a quoted list of arguments.
Each argument is a li st of one or more syntactic codes, e.g. one code as in (NNUPDB) =
noun, utrum, plural, definite, basic case, for maskinerna, traktorerna, or two alternative
codes as in (PR ABX)= preposition or adverb for på. It builds an initial chart in which
each syntactic code is represented by an edge of its own, and processing starts.

Reportchart scans the chart generated by the parser, and in this example it will find an edge
with an error message (GPNPAG01) spanning a sequence of edges from vertex 5 to vertex 7,
and generate an error message accordingly:

> (reportchart)

INTERVALL [INTERVAL]: 5,7

FEL [ERROR]: number agreement in premodifier - noun

In App. IV a few more examples of input to ScarCeck and its results are presented.

Performance

Recall and missing errors

 10

Recall may be tested systematically only when the set of target error types has been
determined. This is, basically, the case for Swedish (see above), whereas some decisions
remain to be made for Danish and Norwegian1.

Tests that were carried out so far for Swedish show that recall with respect to the target error
types is satisfactory in the current implementation of ScarCheck, but not in the current
implementation of the CORRie fragment analysis approach.

Tests carried out so far on Danish in the CORRie fragment analysis model show that recall
with respect to fundamental NP agreement errors is satisfactory.

Precision and false alarms
The tests that were carried out so far show that satisfactory precision may be achieved in both
frameworks.

Speed
Processing time depends crucially on the speed of the processor of the computer. Therefore it
is not quite relevant to present figures on processing time in isolation. However, at UU a
comparison was made between ScarCheck, and CORRie fragment analysis. The same test
sentences were run on the same computer. Processing time for ScarCheck was roughly 3.25
times slower than for CORRie (App.2: p. 16). A factor that was not taken into account though
was recall . ScarCheck detected more error types than CORRie. Still we may safely conclude
that ScarCheck in its current implementation is slower than CORRie. This is not surprising.
The ScarCheck parser is written in Lisp, and it comprises a machinery with many functions
that are not needed for the purpose of grammar checking. Roughly, only 3,000 lines of code
out of a total of 10,000 are required. If a UCP light is selected (based on these 3,000 lines of
code) and rewritten in C, processing speed will i ncrease substantially and the resulting pilot
meet the needs for a commercialisation.

Size
Regardless of grammar checking alternative, size seems to present no problems for the Scarrie
pilot.

Conclusions

• CORRie outperforms MorphoLogic as a spell checker for Scarrie.

• Both the CORRie fragment analysis approach and the ScarCheck approach outperform
MorphoLogic as a grammar checking alternative for Scarrie.

• It is possible to integrate an external parser into the CORRie framework, and CORRie
with two options for grammar checking, i.e. CORRie fragment analysis, and ScarCheck
will provide the best platform for the Scarrie pilot. See proposed architecture below.

1 Systematic tests on a large scale will be carried out in WP 7.

 11

• Current implementation of CORRie fragment analysis is faster than the Lisp version of
ScarCheck, and CORRie fragment analysis has a potential for covering more error types.

• Current implementation of ScarCheck for Swedish covers more error types than CORRie

fragment analysis approach, and ScarCheck has a potential for speeding up (UCP light in
C).

• Current demands on grammar checking functionality in terms of error coverage are found

to be higher on the Swedish market than on the Danish and Norwegian markets.

• Consequently, the UCP light version of ScarCheck will be the best option for
Swedish.

• CORRie fragment analysis approach will be the best option for Danish and

Norwegian.

 12

Architecture

The Scarr ie Pilot

 13

Corr ie Grammar Checker

 14

ScarCheck Grammar Checker

 15

References

CST 1998, An inquiry on software for combined spelli ng and grammar checking. Product
under consideration: CORRie. Scarrie common workspace. Technology baseline.

Music, Bradley, 1997, Replacing the CORRie parser. Scarrie common workspace.

Paggio, Patrizia, 1998, Experiments with grammar writing in the CORRie formalism. Scarrie
common workspace, Work packages, WP6, Grammar testing, Danish.

Sågvall Hein, Anna, 1997. Input to the Scarrie grammar checking module. Scarrie common
workspace, Work packages, WP6.

Sågvall Hein, Anna, 1998a, A chart-based framework for grammar checking. Initial studies.
Proceedings of Nodalida '98, Copenhaguen 1998.

Sågvall Hein, Anna, 1998b, A test version of the grammar checker for Swedish. DEL 6.5.1.
Scarrie common workspace, Work packages, WP6.

Sågvall Hein, Anna, Paggio, Patrizia and Wedbjer Rambell , Olga with contributions from
Bart Jongejan, Leif-Jöran Olsson, Claus Povlsen, and Per Starbäck, 1998, An inquiry on
software for spell checking and grammar checking, Scarrie common workspace, Technology
baseline

Wedbjer Rambell , Olga, 1998, A Minor Grammar Checking Test for Swedish Using the
Fragment Analysis Approach in CORRie, Scarrie common workspace, Work packages, WP 6,
Grammar testing, Swedish.

Vosse, Theo G., 1994. The Word Connection. Grammar-based Spelli ng Error Correction in
Dutch. Amsterdam.

 16

Appendix I

Questionnaire for An inquiry of software for combined spell checking and grammar checking, 1st run
(The questionnaire was compiled by UU with input from CST and HIT).

1 I may provide a commercial software that performs spell checking and grammar checking.

2 It is robust and applies to unrestricted text.

3 Dictionaries and grammar are easily interchanged for different languages.

4 It uses the same dictionary for spell checking and grammar checking.

5 It recognises correct words that are not in the dictionary (by compound analysis and/or other means).

6 It suggests well -motivated corrections in a preferred order based e.g. on pronounciation, string similarity,
and frequency.

7 The dictionary may include non-approved words and phrases, and suggest replacements.

8 It inserts hyphenation positions in accordance with markings in the dictionary.

9 It considers different style registers.

10 The dictionary may include multi -word expressions for correction of misspelled idioms and parsing
eff iciency.

11 a) Agreement errors in various phrase types (NPs etc.)

b) Erroneous verb sequences

c) Fundamental construction errors at clause level

12 Performance

(Feel free to state performance data in your own terms.)

The software runs on a computer with the following basic requirements:

…

It works with the following speed:
…

 17

Appendix II

 Monday, 18 May 1998

An inquiry on software for combined spell checking and grammar
checking

by

Anna Sågvall Hein, Patr izia Paggio and Olga Wedbjer Rambell

with contr ibutions from

Bar t Jongejan, Leif-Jöran Olsson,

Claus Povlsen and Per Starbäck

Software alternatives under consideration:

1st alternative:
CORRie for spell checking and grammar checking
Main investigator : CST

2nd alternative:
CORRie for spell checking and ScarCheck for grammar checking (CO +SC)
Main investigator : UU

3rd alternative:
MorphoLogic for spell checking and grammar checking (MOR)

==

Answers to the questionnaire:
1 It is a commercial software that performs spell checking and grammar checking.

CORRie: YES.

(So far, the grammar checking part of the software has not been used in a
commercial product.)

CO+SC: YES.
(So far, the grammar checking part of the software has not been used in a
commercial product. Some work is needed to adapt it to such a use.)

MOR: YES
==
2 It is robust and applies to unrestricted text.

 18

CORRie: YES

It processes flat text with virtually unlimited line length. The program runs in a
very stable way, which does not mean that it is without errors.

There are a few problems with the layout that can probably all be solved
relatively easily:

• Output is written with a max column width that is defined as an input

parameter (with a hard coded upper limit that can be easily changed, but
necessitates recompilation). Input text with wider columns is wrapped
between words - sometimes before punctuation, instead of after. There is no
option to let the unbounded input column width survive in the output.
Especially input text with no particular column width (e.g. text that only has
new-line characters to denote the end of paragraphs) may appear with an
unwanted layout in the output.

• An extra left-hand margin is added to the output. The margin contains blanks

or the string --> to indicate an error. Errors are described on the same line
(without indication in the margin) or on the next line (which starts with -->
in the margin), depending on whether the text was wrapped or not.

There are also a few things that diminish CORRie’s flexibilit y:

• Symbols below the ASCII value 32 seem all to be handled as white space.

This may not always be desirable.

• The character set (e.g. Latin-1) of the input text must match the character set
that is hard-coded in the program. The program cannot handle a text with
more than one character set.

There is, at least in the Danish version, a bug in the system’s handling of
numbers.

Furthermore, CORRie does not always handle abbreviations correctly. The
abbreviation “kr.” , for example, is corrected to “c.” .

CO+SC: YES.

MOR: YES

2.1 Do you cope with grammar checking without full parse?

CORRie: NO

If your answer is yes to 2.1, please, describe briefly the strategy you use

Otherwise, how is robustness ensured? Although a full sentence parse must be
produced, rules may be written covering a sentence in fragments. Hereby it is
possible to focus on the internal structure of certain syntactic elements leaving

 19

other elements unanalysed or unidentified. This has been done in the current
Danish grammar. A detailed description can be found in the report “Experiments
with grammar writing in the CORRie formalism” (available on the Scarrie
workspace). This approach has also been tested for Swedish, and the results are
presented in the report "A minor grammar checking test for Swedish using the
fragment analysis approach in CORRie" (also available on the Scarrie common
workspace). Furthermore, it should be noted that the system does not crash
when a parse is not produced, and that spelli ng checking is performed anyway,
so in this sense robustness is ensured.

CO+SC: YES

If your answer is yes to 2.1, please, describe briefly the strategy you are using

 Robustness is ensured via partial parsing and the application of local error rules.

By partial parsing we understand an approach where only certain types of
constituents are analysed, such as NPs, PPs, APs, AdvPs, and VGs (the verbal
core of the VP). The constituent analysis is also robust in itself in that it allows
for feature relaxation for catching feature violations, such as agreement errors.
Typically, there are no sentence rules. Segments that are not covered by
grammar rules are stepped by in the analysis. As opposed to the fragmens in the
CORRie fragment analysis, unanalysed segments need not be foreseen in the
grammar.

The rules are formulated in a procedural formalism and invoked bottom-up at
the recognition of lexical categories. For instance, the recognition of a
determiner leads to the invocation of an NP-rule (designed for the recognition of
NPs introduced by determiners). Local error rules are formulated in the same
formalism as the grammar rules and invoked in the same manner. Whereas the
partial parsing rules generate linguistic descriptions that may be used by other
rules in the continued analysis, the application of the local error rules generates
descriptions of erroneous fragments of constituents that are not to be used by
other rules.

The ScarCheck machinery is implemented as two modules, a chart parser, UCP,
and an error reporting module, REPORTCHART. The ScarCheck approach was
presented at the NODALIDA 98: "A Chart-based Framework for Grammar
Checking". It is available on the Scarrie common workspace as Del. 6.5.1b.

Otherwise, how is robustness ensured?

MOR: YES

First, the morphological analyser runs, and provides the next phase with
all the information it can. The next phase is a sort of pattern matching using
the above given morpho-syntactic symbols. Underspecification, that is,
wildcards of different degrees, is allowed.

==

 20

3 Dictionaries and grammars are easily interchanged for different languages.

CORRIE: Dictionaries and grammars themselves are easily interchanged for different

languages. However, the program contains language-specific source code.
Therefore, any executable version of the CORRie program is dedicated to a
single language.

Examples of such language-specific data that had to be adapted to create the
Danish version are:

• Binding morphemes and endings
• Placement of hyphens
• Character tables
• List of vowels
• Prefixes
• Features attached to the main grammatical categories
• Digits in words

The binary dictionaries and grammars must sometimes be recompiled after
changes in the source code and cannot be used by versions of CORRie that are
adapted to other languages

CO+SC: As regards the linguistics resources needed for spell checking by means of

CORRie, see above. As regards the grammar, see 3.1 below.

MOR: YES, in principle, but "easily" is not a well -defined term.

3.1 Could you give a rough estimate of how much effort (in terms of pm) it would

take to extend your software to a new language, i.e. adapting language resources
such as:

 grammar

dictionary

multi -word lists

compounding rules

character encodings

mark-up codes
pronunciation rules

provided that these resources are available in a machine-tractable form?

CORRIE: Adapting (converting) the CORRie platform to treat a new object language will
approximately require two man days provided the linguistic resources are
expressed in a formalism which CORRie can interpret. Information about how
much manpower is needed to develop the various linguistic components (stated
in the list) can be found in the Technical Annex of the SCARRIE project.

 21

CO+SC: The CORRie + ScarCheck alternative includes a grammar for Swedish covering
the fundamental error types that were identified in the error collection phase.
Adapting this grammar for a new closely related language such as Danish or
Norwegian should not require more than a couple of pw.

MOR: grammar:

rather patterns for typical potential erroneous structures
than grammar 8 pm

dictionary: words with morphological encoding 6 pm
(ca. 100,000 entries) (from scratch, but must be less becuase
of your existing sources)

compounding rules: (included in the morphological description)

character encodings no problem

pronunciation rules: unfortunately, we have not used pronunciation
rules yet but can be covered by the patterns, as well

__
3.2 What encoding format do the linguistic resources have (e.g. ascii , unicode)?

CORRIE: Latin-1

CO+SC: Latin-1

MOR: Not yet Unicode, but any 8-bit representation is usable.
==
4 It uses the same dictionary for spell checking and grammar checking.

CORRIE: YES

The same dictionary can be used for spelli ng and grammar checking provided
the correct mapping between dictionary features and grammar features is
specified in the relevant declaration. Dictionary and grammar features obey in
fact different formats. The Danish grammar has been tested with a subset of the
main dictionary to ensure that the feature mapping works correctly. In addition
to the main dictionary, an exception dictionary can also be used to state
additional lexical information to be used by the parser.

CO+SC: YES

 MOR: YES

4.1 Is your (main) dictionary a full -form dictionary?

CORRie: YES

CO+SC: YES

 22

MOR: NO, there are dictionaries for stems and aff ixes.

4.2 What kind of grammatical information is/can be included in the dictionary?

CORRIE: All kinds of grammatical information can be included in the

dictionary

CO+SC: Information about word category and morpho-syntactic features is included in

the Swedish dictionary together with information about grammar rules to be
triggered. (So far, however, we found no way of including and accessing
information about lemma and information holding for all the forms of a lemma
in a convenient way, such as subcategorisation and semantic features.)

MOR: Depending on the language, but mainly the encoding of the morphemes'
 behavior before and after other morphemes.

4.3 Is there a limit to the number of grammatical features that may be included in

the dictionary and used in the grammar checking process?

CORRIE: In principle, there is no limitation to the amount of grammatical information that

can be included in the dictionary.

CO+SC: NO

MOR: NO, in principle there are no limits, in fact, of course, the program has
 some limits, but Hungarian morphology could also been described with it, so
 it must be enough for your languages, as well .
===
5 It recognises correct words that are not in the dictionary (by compound
analysis and/or other means).

CORRie: YES

The Danish and the Swedish resources built so far include preliminary
compound grammars that are used with reasonable success. For Danish, there
are plans to add lexical restrictions concerning binding elements to obtain better
precision results on compound analysis. Also the Swedish resource will be fine-
tuned.

CO+SC: See CORRie.

MOR: YES

5.1 Does it perform capitalisation check?

CORRie: YES, mostly. If a word is coded in the dictionary with a capital letter, CORRie

corrects it when it is spelt without capital. If a word is not spelt with a capital in
the dictionary, on the other hand, CORRie does not correct it when spelt with a
capital in the text.

CO+SC: See CORRie.

 23

MOR: YES

__

5.2 Does it identify potential proper names?

CORRie: YES, although we haven’ t tested this feature extensively, we have seen that the
system recognises (at least some) potential proper names.

CO+SC: See CORRie.

MOR: There are proper names in the dictionary, but it does not identify new ones.

5.3 Does the system use other means for recognising unknown words?

CORRie: YES, frequency information is also used for recognising unknown words.

CO+SC: See CORRie.

MOR: The morphological analyzer we use is also the kernel module of our speller,
 so if it does not know a word, there are possibiliti es to add, as usual in spellers.
 There is a guesser in preparation that will help the user in adding linguistic
 info to the new words, automatically. Presently, we use a special user dictionary,
 called inflectional dictionary, where the user is expected to add two words per

line: the unknown word in question and another one that behaves
morphologically in a very similar way. It is a bit intuitive, we know, but it is the
simplest way to provide the new words with linguistic information.

===
6 It suggests well -motivated corrections in a preferred order based e.g. on
pronounciation, string similarity, and frequency.

CORRie: As regards word checking, the program can produce lists of corrections based on

pronunciation, string similarity, and frequency. However, although the complete
list can be inspected during development by way of a help program (ncorr-
demo), only the highest scoring alternative is currently presented to the end user.

 The grammar checker generates corrections for feature violation errors. It looks

up the incorrect word in the dictionary and searches for an alternative word form
of the same lemma with the correct set of features. If there are several
candidates, the program chooses the alternative with the shortest edit distance to
the erroneous word.

CO+SC: For word checking, see CORRie. For grammar checking, there is still no

corrections mechanism available.

MOR: Well -motivated corrections, in a specific order (some sort of preference)

6.1 What’s the principle(s) for generating and ordering the corrections?

 24

CORRie: Correction of spell checking errors in CORRie is based on the concept of
‘minimal edit distance’ , which is defined as the number of changes needed to
transform one word into another. When computing the minimal distance,
CORRie both compares the orthographic strings corresponding to the invalid
word under consideration and its possible replacement, and compares the
phonetic representations of the same two words. The two scores obtained are
totted up and used to pick the best possible replacement. Frequency information
is also taken into account.

 As regards correction of grammatical errors, see above.

CO+SC: See CORRie.

MOR: We have tried to collect most of the typical errors and rank them. So the system

tries first to find patterns to the most criti cal errors, and so on.
===
7 The dictionary may include

a) non-approved words and phrases, and
b) suggest replacements of non-approved words

CORRie: YES, but phrases (both valid and invalid forms) are stored in a separate idiom
list.

CO+SC: See CORRie.

MOR: YES

7.1 Does the software recognise and correct incorrectly split words?

CORRie: YES, if at least one of the segments resulting from the erroneous split i s not

itself a correct word to be found in the dictionary.

CO+SC: See CORRie.

MOR: YES

7.2 Does the software recognise and correct incorrectly joined words?

CORRie: YES (according to system documentation, not confirmed by preliminary testing,
but no attempts made to investigate the cause of failure)

CO+SC: See CORRie.

MOR: YES, what can be recognised on a formal basis. (There is no semantics.)

7.3 Does the software recognise repeated words?

 25

CORRIE: YES

CO+SC: See CORRie.

MOR: NO, but it can be added easily (word-processors calli ng our functions do it

 without linguistics).

If the answer is YES, how many words can the repetition consist of?

CORRie: According to system documentation, 16. We have been able to obtain
recognition of a repetition consisting of 3 words within the same sentence.

CO+SC: See CORRie.

===
8 It inserts hyphenation positions in accordance with markings in the
dictionary.

CORRie: It should be possible to insert hyphenation positions in the dictionary entries and

have the search process ignore them.

CO+SC: See CORRie.

MOR: YES, it offers the hyphenation positions, and inserts them if needed.

8.1 Are the suggestions for hyphenation positions stored with the dictionary entries

or calculated by means of rules during the processing?

CORRie: Stored with the dictionary entries.

CO+SC: See CORRie.

MOR: Both.

===
9 It considers different style registers.

CORRie: YES.

The vast majority of commercial style checkers available consider only isolated
words in order to distinguish between writing styles. This form of style checking
can be done in the CORRie platform. The dictionary format in fact allows for
tagging of words in the dictionary to express that
1) the word is only valid in the current style and is otherwise rejected
or that
2) the word will only be replaced under a certain style and accepted otherwise

 26

CO+SC: See CORRie.

MOR: YES

9.1 How many different style registers may it consider?

CORRie: For each type of tagging it is possible to express 7 different styles.

CO+SC: See CORRie.

MOR: In this moment, three. It can be changed, of course, if there is a reason why.

9.2. Is a style register consistently enforced throughout the document?

CORRie: YES, if the coding in the dictionary is consistent

Since CORRie already makes statistics of the input document (e.g. average
sentence length) it should be possible to add information on the writing style to
these statistics for the user to inspect.

CO+SC: See CORRie.

MOR: It is a question of the calli ng module, not the grammar checker itself.
===
10 The dictionary may include multi -word expressions for correction of
misspelled idioms and parsing eff iciency.

CORRie: YES, multi -word idioms and their possible misspelli ngs are stored in a separate

idiom list. Misspelt idioms can be corrected if the error is foreseen, i.e. an
invalid form. In addition, an idiom may be identified as incorrect (but with no
correction generated) if any of the in-going words is missing in the word form
dictionary.

CO+SC: See CORRie.

MOR: Partly solved.

10.1 Does the dictionary include misspelled idioms with suggestions for corrections?

CORRie: YES, the idiom list can include invalid forms.

CO+SC: See CORRie.

MOR: YES, it is possible to do.

 27

10.2 Does the dictionary include multiword expressions for parsing eff iciency, and
may these expressions be assigned information about word category and other
kinds of features?

CORRie: Experiments with the way in which the idiom list interacts with the parser is

carried out for Swedish. According to the documentation, idioms can be treated
by the parser as sequences of independent words or as units, depending on a
code attached to each idiom in the idiom list. Category and features can be
assigned in the idiom list. The format used is the same as in the exception
dictionary.

CO+SC: See CORRie.

MOR: Under development.
===
11 It handles systematic grammatical errors such as

a) Agreement errors in various phrase types (NPs etc.)
b) Erroneous verb sequences
c) Fundamental construction errors at clause level

CORRie: So far, only agreement errors have been treated in the fragment analysis
 approach. Every sentence is assigned a full parse in terms of recognised

fragments. So far, only one sentence rule has been used, both in the Danish and
the Swedish test grammar. The sentence rule expands into fragments. A
fragment may be an NP, and then there is a number of rules determining what an
NP may look like. A fragment rule expands into a phrase type (more or less
completely described by usual rules or local error rules) or into a terminal
symbol (matches the word and makes no attempt at building a phrase). The
fundamental question in determining the potential of this approach is to decide
how much has to be specified in the grammar, i.e. how comprehensive it must
be in terms of sentence rules, clause rules etc. in order to recognise the errors
that the pilot should focus on. So far, no attempt has been made at formulating
clause rules. In other words, how complete must the grammar to be in order to
capture the fundamental errors without generating false alarms?

CO+SC: YES, the grammar comprises rules for the three types of errors.

MOR: Most but not all of them are covered.
__
11.1 Is the method used for grammar checking based on statistics or grammar rules?

CORRie: Grammar rules

CO+SC: Grammar rules

MOR: Local grammar rules.

 28

If your system uses a grammar, can you give an example of a simple grammar rule for the
treatment of agreement?

CORRie: Examples are shown in the report “Experiments with grammar writing in the

CORRie formalism”, and in the report "A minor grammar checking test for
Swedish using the fragment analysis approach in CORRie."

CO+SC: YES.

Below you will find an example of a grammar rule for the treatment of
agreement errors in NPs. The rule is designed for the recognition of the head
noun in NPs consisting of a determiner, an adjective phrase, and a noun. Three
kinds of agreement errors are captured, i.e. violation of number agreement,
gender agreement and species (form) agreement between the premodifier
(determiner and adjective phrase) and the head noun. A description of the phrase
thus recognised is stored in the chart to be used in the further processing.
Further, the recognition of a following relative clause (det.rel.tail) is initiated.
This rule invocation is conditioned by the determiner; it has to be a definite
article. The application of the subrule det.rel.tail imposes constraints on the
species of the head noun when modified by a relative clause. Finally, if the NP
is in the genitive case, processing for an NP introduced by a genitive attribute is
invoked. Error features are assigned values in accordance with Error typology
for automaatic proof.reading purposes (see DEL 2.1).

(define sve.gram - entry np.det.adjp_noun

 #u <* word.cat > = 'noun,
(<& numb>:=:<* numb>/<& err :new>:=:'gpnpag01),
(<& gender>:=:<* gender>/<& err :new>:=:'gpnpag02),
(<& form> :=: <* form>/<& err :new>:=:'gpnpag03),

 <& case>:=:<* case>,
 <& head word.cat> :=:<* word.cat>,store,
 (<& det word.cat>='art,not <& err :last>='gpnpag01,
 advance(det.rel.tail)/continue),
 (<& case>:=:'gen,assign.majorprocess(np_poss)/continue);

#! word.cat;)

MOR: Agreement is not a criti cal problem in Hungarian, so it is not yet included, but
we can describe the agreement problem for other languages with the help of the
present formalism.

11.2 Is there a limit to how many tokens an identifiable error can span over?

CORRie: In principle, NO.

CO+SC: NO

MOR: In principle no, in fact, we have never tried to exceed 8-9 tokens.

11.3 What types of agreement errors are recognised?

CORRie: Currently, the Danish grammar contains rules for the treatment of gender,

number and definiteness agreement in NPs of limited comnplexity. It could

 29

easily be extended to treating e.g. subject predicate agreement.

CO+SC: Currently, the Swedish grammar covers the following types of agreement errors,
 classified in accordance with the error typology (DEL 2.1).

GPNPAG01 "number agreement in premodifier - noun"

GPNPAG02 "gender agreement in premodifier - noun"
 GPNPAG03 "species agreement in premodifier - noun"

 GPNPAG04 "definite noun form instead of indefi nite"

 GPNPAG08 "number agreement in noun with apposition"

 GPNPAG13 "gender agreement in premodifier - pnoun"

 GPAPAG01 "agreement in coordinated adjective phrases"

 GPAPAG02 "agreement in parallel adjective phrases"

MOR: --

11.4 What types of errors are recognised in the verb phrase?

CORRie: In principle any type that can be captured by way of a rewrite rule (either a
 'normal' or an error rule in terms of the CORRie formalism). However, only

some types of errors in the verb phrase are domain-revelant (subcategorisation
 errors, for example, are relatively rare in the Danish corpus).

CO+SC: Currently, the grammar handles the following types of verb phrase errors:

GPVFFV01 "infinit e verb instead of finite"

GPVFMF01 "doubled verb in the finite form"
GPVFMF05 "supine form instead of imperative"

 GPVFMV04 "past tense + past tense" => past tense + infinitive"

MOR: E.g. missing argument, in some special cases.

11.5 What types of errors are recognised at clause level?

We think of errors such as missing finite verb:
* “Man kanske inte behov av ….” -> Man kanske inte har behov av ….” .

CORRie: We have not experimented with errors at clause level. Some of them should not
 be too diff icult to treat, e.g. the one mentioned, which could be treated by a
 sentence error rule where none of the fragments the sentence consists of is a
 finite verb.

Errors the treatment of which presupposes a complete and meaningful parse of
the whole sentence, however, may be too costly: an example relevant to Danish
could be incorrect word order in subordinate sentences. Such an error, however,
is quite rare in our domain. Therefore, we are not planning to handle it.

CO+SC: Currently, the grammar handles the following type of error at clause level:

 30

GPVVMV01 "finite verb missing"

MOR: Missing finite verb, exactly, or more than one verb without conjunctive elements

 in between, etc.

11.6 What other types of errors are recognised?

CORRIE: CORRie has a facilit y for splitti ng run-ons and joining incorrectly split words;

we hope to be able to make these routines interact with the grammar so that in
cases where both possibiliti es are valid in isolation (as often the case), the
correct alternative is made to depend on the grammatical context.

CO+SC: GPPCOF01 "subjective form => objective form"

MOR: Missing obligatory elements. e.g. prepositions (postpositions, in fact, in
Hungarian) without reference.

11.7 Does the system generate suggestions for corrections for the grammatical errors

that it identifies?

CORRIE: YES, if the error is recognised as a feature violation error and

an alternative with the correct features can be found in the dictionary.

CO+SC: Not in its current version. It can be extended to do so, however, partly falli ng

back on CORRie's correction mechanisms.

MOR: Yes, in some cases, but morphologically they are not always perfect. In spite of

 our existing inflectional thesaurus module that uses generation tools, here in the

 grammar system we have not used it yet.

11.8 Does the system generate diagnoses for the grammatical errors that it idenfies?

If, YES, please given an example.

CORRIE: YES,

if an error rule has been applied (see the report for more details and examples).

CO+SC: It depends on how "diagnosis" is understood. The recognition message

currently generated by the system is formulated in accordance with the quite
elaborate four level error typology defined in the project (see DEL 2.1).

MOR: It quotes the Orthographical Advisory Dictionary's adequate paragraphs as
diagnosis.

===

12 PERFORMANCE

 31

CO+SC: CO+SC is the result of an integration of CORRie and ScarCheck. The two
modules are linked via an interface that was developed by UU. CORRie handles
word checking and ScarCheck grammar checking. The two modules use a
common dictionary, and dictionary search is carried out once for each word
type.

As a result of the word checking process syntactic codes are assigned to the
word types in CORRie (retrieved from the dictionary or generated by rules), and
these codes are forwarded to ScarCheck for grammar checking. ScarCheck(2)
translates the codes into AV-structures and builds a chart of these structures.
Thus the initial chart will comprise word edges only, as opposed to character
edges as in the original version of ScarCheck. This simpli fication (no dictionary
search, initial chart of word edges, no character edges) reduces processing time
by almost 50%.

ScarCheck consists of two modules, a chart parser, UCP, and a chart interpreter,
Reportchart. They are both written in Commonlisp There are several
implementations of Commonlisp. Scarcheck uses CLISP which is a free ware
that runs under DOS, OS/2, Windows NT, Windows 95, Amiga 500-4000,
Acorn RISC PC, and Unix. In principle, thus, UCP runs on all these
platforms eventhough some minor modifications may be needed when changing
platforms e.g. because of different file systems.

The program scarcheck(2) is a "memory dump" of a li sp comprising UCP,
Reportchart and the grammar that is to be used. Current version of scarcheck(2)
with a grammar of 41 rules occupies approximately 1,3 Mbyte disk space. This
dump and CLISP is what is needed to run the checker.

All i n all , there are 218 different syntactic codes that are transferred from
CORRie to UCP.

MOR: The software runs on a computer with the following basic requirements:

The kernel part of or software has been written in standard C and C++,
the code is portable and can be compiled by most of the
well -known C and C++ compilers.

It works with the following speed:
Diff icult to give concrete data, but the general speed must be usable, because
quite a lot of international companies (Microsoft, Lotus, Inso, Franklin,
Proximity, Rank Xerox, etc.) have licensed our proofing tools.

12.1 Is there a demo version of your system for public testing?

CORRIE: The project has several running versions available.

CO+SC: There is one version available for testing the integrated alternative (with the

complete Swedish dictionary), and two versions available for testing ScarCheck
in isolation. The test versions are currently available at the Unix systems at UU,

 32

but interested parties can get guest accounts there to try them out. You will need
an Internet connection and an X server (for instance, Exodus for Windows.

MOR: NO, but I offer the full version for testing purposes (it needs someone who

knows some Hungarian...).

Please, provide figures concerning performance on a typical document (specify number of
running words, syntactic complexity, number of error tokens, number of error types, and
platform)

CORRie: On a unedited domain-relevant document run on an HP 9000 (170 MHz), with

the parser active, CORRie generated the following statistics:

CPU time: 88 sec.
Elapsed time: 0:57
2904 words, 1249 unique
143 sentences, with an average of 20.31 words per sentence
Gunning-Fog: 17.4
Flesch: 29.2
Flesch-Kincaid: 14.2
Raygor Readabilit y Estimate: Coll

Please, provide the following figures obtained on a typical document:

• recall (number of valid words recognised/total number of valid words, and number of
errors flagged/total number of errors)

• precision (number of correct flaggings/number of f laggings)
• suggestion adequacy (number of correct first suggestions/number of f laggings)

CORRIE: On the same document, the following results were obtained:

Recall

 2904 total words

 2800 valid words

 2645 (94.5%) valid words accepted

 155 (5.5%) valid words rejected (bad flags)

 104 invalid words (real errors)

 32 (30.8%) real errors spotted (good flags)

 72 (69.2%) real errors missed

Precision

 187 flaggings

 32 (17.1%) good flags

 155 (82.9%) bad flags (false positives)

 33

Suggestion adequacy

 32 good flags

 4 (12.5%) hits on initial suggestion

 0 (0.0%) hits on non-initial suggestion

 14 (43.8%) misses (suggestions offered, none correct)

 14 (43.8%) with no suggestions offered

A brief analysis of the output showed that:

• bad flags are mostly due to

• the bug in the treatment of numbers

• some unrecognised proper names (probably due to the fact that the text was
relatively short)

• unrecognised foreign words

• misses are mostly due to:

• punctuation errors

• false negatives due to agreement

• binding elements in compounds

• no replies are mostly due to:

• capitalisation errors

• binding elements in compounds

In general, the figures obtained may seem rather poor. However, they reflect a rather tough
evaluation methodology, as even a missing comma in the CORRie output counts as an error
when the output is compared with the corresponding proof-read version. Furthermore, it must
be remembered that the dictionary is the only component of the Danish version of the system
that can be considered complete at this stage.

CO+SC: So far, only limited testing has been performed with the integrated

alternative. The object of the test was a demo text consisting of 346 tokens. The
complete Swedish dictionary and the complete grammar was engaged.
Processing time compared to the CORRie alternative is approximately, 3.25
times slower. The test focused on grammatical errors and they were identified
with the same precision and recall as in ScarCheck in isolation.

The integration work and subsequent systematic testing was for quite some time
hampered by a serious bug in CORRie with the effect that syntactic codes were
not generated for all the dictionary alternatives and could thus not be forwarded
to the grammar checker. This problem and several others have now been solved
and systematic testing may be performed.

 34

In order to turn the combined CORRie+ScarCheck alternative into a commercial
product a light version of UCP containing only the relevant parts for this
application should be defined and rewritten in the C programming language.
Meanwhile, for testing and functional validation, the current version of the
checker is appropriate.

MOR: NO ANSWER

 35

Appendix III

UU/Leif-Jöran Olsson

The integration of ScarCheck into CORRie

1. Checked the documentation "How to integrate a parser into CORRie" to find

 out which functions and datatypes that were involved in the grammarcheck.

2. Added the expect library to the Makefile, Corrie2.c and lrparse.c

3. Completely rewrote the function CheckSentence and called it CheckSentence2

 to send the transfercodes to ScarCheck. Adds transfercodes to

 interpunctuation.

4. Received bugfix from Vosse for the function DetermineNewWords, to get at

 all the transfercodes for each word.

5. Moved MakeExtraInfo to gramlexint.c and changed the order of includefiles

 in associated files.

6. Changed DetermineAppearance2 to call LookUpWord2 if not LookUpWord.

 Adds proper noun transfercodes.

7. Wrote new LookUpWord called LookUpWord2, which returns ExtraInfoPtr instead

 of CATREP.

8. Wrote new FilterCompoundCat called FilterCompoundCat2, which returns

 ExtraInfoPtr instead of CATREP.

9. Wrote new AddPrivate called AddPrivate2, which handles ExtraInfoPtr

 instead of CATREP.

10. Wrote new ConvertString called ConvertString2, which returns

 ExtraInfoPtr instead of CATREP. Added calls in gramlexint.c,

 idiomint.c and Corrie2.c.

 36

11. Wrote new ConvertDict called ConvertDict2, which handles ExtraInfoPtr

 instead of CATREP. Added calls in gramlexint.c, lrparse.c and Corrie2.c.

12. Added new struct DictTree2 and type DICTTREE2, which handles ExtraInfoPtr

 instead of CATREP.

13. Conditioned block in DetermineAppearance2 with check for ScarCheckP.

14. Conditioned block in SetUpDictionaryAndGrammar with check for ScarCheckP.

 Added wildCard2 which is ExtraInfoPtr instead of CATREP.

15. Conditioned block in main with check for ScarCheckP.

16. Conditioned blocks in ReadUsersDictionary with check for ScarCheckP.

17. Wrote new LookUpPrivate called LookUpPrivate2, which returns

 DICTTREE2 instead of DICTTREE.

18. Wrote new type IdiomRepPtr2 and struct IdiomRep2, which handles

 ExtraInfoPtr instead of CATREP.

19. Wrote new WordDefinition called WordDefinition2, which looks up

 ExtraInfoPtr instead of CATREP via LookUpWord2.

20. Wrote new MakeSentence called MakeSentence2, which handles

 ExtraInfoPtr instead of CATREP.

21. Wrote new type SENTENCE2 and struct Sentence2, which handles

 ExtraInfoPtr instead of CATREP.

22. Wrote new PutInCache called PutInCache2, which handles

 ExtraInfoPtr instead of CATREP.

23. Changing calls to MemberOf in new functions to existing WrdNCmp, which

 37

 handles ExtraInfoPtr (chars) instead of CATREP.

24. Moved MakeExtraInfo and struct ExtraInfoPtr again (see 5) from

 gramlexint.c to lrparse.c and changed the order of includefiles

 gramlexint.h and lrparse.h in lrparse.c.

25. Wrote new IdiomRep called IdiomRep2, to handle idioms, which handles

 ExtraInfoPtr instead of CATREP.

26. Wrote new BeginIdiom called BeginIdiom2, to handle idioms, which handles

 SENTENCE2 instead of SENTENCE.

27. Wrote new TryBeginIdiom called TryBeginIdiom2, to handle idioms, which

 handles SENTENCE2 instead of SENTENCE.

28. Wrote new TryIdiomRep called TryIdiomRep2, to handle idioms, which

 handles SENTENCE2 instead of SENTENCE.

29. Wrote new IsANoun called IsANoun2, to handle idioms, which

 handles SENTENCE2 instead of SENTENCE.

30. Conditioned blocks in InitIdiom with check for ScarCheckP. Added

 concatClass2 which is ExtraInfoPtr instead of CATREP.

31. Wrote new ConvertSentence called ConvertSentence2 to handle idioms, which

 handles ExtraInfoPtr instead of CATREP. (called in ParseErrorModeInit,

 which is not present in CheckSentence2)

32. Conditioned blocks in ProcessSentenceElement with check for ScarCheckP.

33. Added idiom handling to CheckSentence2.

 38

Appendix IV

Examples of input to ScarCheck from CORRie, and results of the
processing
The sentences are run in pairs, right version followed by wrong version. They are presented
after the results of the processing. When reportchart gives no error message, the sentence has
been found correct.

(sp '((PNXPS ALXPD) (NLOXB) (NNUPDB) (PR ABX) (PMNX) (PCPUSDG VBPRM)
(NLCXX) (PUNC)))

> (reportchart)

> De första medlingarna i Västerås genomfördes 1994.

===

(sp '((PNNSZ NNNSIB ALNSD) (NLOXB) (NNUPDB) (PR ABX) (PMNX) (PCPUSDG
VBPRM) (NLCXX) (PUNC)))

> (reportchart)

INTERVALL: 1,3

FEL: number agreement in premodifier - noun

> Det första medlingarna i Västerås genomfördes 1994.

===

(sp '((NNNXIB) (VBARM PCPXSDB) (ABX) (PR ABX) (PNXPS ALXPD) (AVXXX BC
) (NNUPDB) (CN) (NNUPDB)))

> (reportchart)

> Folk väntade förmodligen på de större maskinerna och traktorerna

===

(sp '((NNNXIB) (VBARM PCPXSDB) (ABX) (PR ABX) (PNNSZ NNNSIB ALNSD)
(AVXXX BC) (NNUPDB) (CN) (NNUPDB)))

> (reportchart)

INTERVALL: 5,7

FEL: number agreement in premodifier - noun

> Folk väntade förmodligen på det större maskinerna och traktorerna

===

(sp '((PNNSZ NNNSIB ALNSD) (VBAPC) (AVNSIBP) (SNO IE) (VBAIM) (PR ABX)
(AVZZZBP) (NNUPIB) (PUNC)))

> (reportchart)

> Det är nödvändigt att tänka i nya banor.

==

 39

(sp '((PNNSZ NNNSIB ALNSD) (AVNSIBP) (SNO IE) (VBAIM) (PR ABX) (AVZZZBP
) (NNUPIB) (PUNC)))

> (reportchart)

INTERVALL: 1,2

FEL: finite verb missing

> Det nödvändigt att tänka i nya banor.

===

Compounds:

anläggningskostnader

mittfältsstrateg

