
In pursuit of decidable ‘logical form’

Michael Minock

TCS/CSC

KTH Royal Institute of Technology, Stockholm, Sweden

minock@kth.se

Abstract

Natural language interfaces commonly map to some type of logical form that represents the meaning of the user’s utterance. It is

rare however, that this logical form is bona fide logic (e.g. expressions that may be tested for satisfiability, etc.). We explore an

approach that limits logical form to decidable logics and exploits this property by deeply integrating theorm proving into analysis,

pragmatics, reasoning and generation. We explore this in the context of providing natural language interfaces to databases. While

support for queries beyond first-order is a requirement (e.g. queries computing average values), we isolate these non-first-order

constructs via markers, flagging sub-expressions for special treatment within the non-linguistic reasoning component. We shall

demonstrate our approach and its merits at SLTC and report on several threads of ongoing work to extend our approach.

1. Introduction

Most natural language interfaces map user utterances to a

logical form that, although formal, is not semantic in the

sense of being able to be conjoined with other logical for-

mulas, transformed into a logical sentence and tested for

satisfiability. A system that can truly treat logical form as

logic, derives many benefits, including, a principled way to

resolve spurious ambiguity during analysis, the capability

of producing equivalent paraphrases of equivalent logical

expressions (addressing the weak form of the logical equiv-

alence problem (Shieber, 1994)), and finally a method to

allow the modular integration of sound and complete rea-

soning into the back-end reasoning and pragmatic compo-

nents. Below (in section 3) we will will elaborate further,

but, in short, systems that do not map to decidable logical

form, largely miss out on these advantages.

A problem, however, is that “first-order logic is unde-

cidable!”. Yes, first-order logic is only semi-decidable,

but large fragments of it are decidable in the relational

case (no function symbols)(Börger et al., 1997; Bernays &

Schönfinkel, 1928), moreover, with the advent of modern

theorem provers (Weidenbach, et al., 2009) and increasing

computational resources, they can be decided quickly. That

said, often we must go beyond first-order logic, for example

if we need to support aggregation queries (e.g. computing

an average salary). We argue that these constructs may be

isolated in a principled fashion via markers.

2. Approach

Our work is part of the long-term, open-source C-PHRASE

effort (Minock, 2010a)(www.c-phrase.org). We have

identified a logic fragment that captures a quite broad

class of queries over entity-relationship modeled databases.

The logic, specified in Codd’s tuple calculus, is based

on the decidable, Bernays-Schönfinkel class (Bernays &

Schönfinkel, 1928) class (Prefix class ∃∗∀∗ over arbitrary

arity predicates and no function symbols). Because we re-

strict our core query language to returning only whole tuple

values, we can keep the language closed under query differ-

ence. This query language is decidable for query emptiness

and containment and is closed under query difference, inter-

section and union. In addition, we have identified a guarded

fragment(Andreka et al., 1998) which keeps these proper-

ties, and permits alternation, though not cyclic queries (see

(Minock, 2010b) for details).

Figure 1: Early/late phases use logical form without marks.

Figure 1 shows our basic approach. User utterances are

processed through an NLU (natural language understand-

ing) component which passes marked logical forms to a

reasoning component which in turn accesses a database

(domain data) and generates a response through an NLG

(natural language generation) component. The phrasal lex-

icon is a store of associations between lexical information

(in the form of phrases) to elementary expressions in our

decidable logic over the relations of the database. This lex-

icon constitutes what must be built (or perhaps learned)

for each new database. From this lexicon, a semantic

grammar that recognizes noun phrases is generated. In re-

verse, this lexicon is used to a generate noun phrase para-

phrases. Thus this domain lexicon provides all the informa-

tion necessary to both analyze and generate noun phrases

(including complex pre- and post-modifiers, recursive rela-

tive clauses, compound heads, adjuncts, coordination, etc.).

The NLU component also includes a domain independent

grammar (based on a simplification of X-Bar theory (Jack-



endoff,1977)) that covers the full interpretation of user ut-

terances. This domain independent grammar inserts marks

into logical form during processing. In turn templates in

the NLU component are selected based on marks. The key

point of figure 1 is that logical form may contain marks

only on the right side of the diagram, otherwise logical form

must be free of marks. Marks themselves are simply key-

words associated with chunks of the decidable logical form.

When marks are removed, the resulting expression is within

the decidable fragment.

As a simple example, the query “what is average popula-

tion western US states?”, is interpreted as the tuple calculus

expression: {〈:avg x.population〉 |State(x) ∧ x.name ∈
{′California′ , ′Nevada′, ...}}, where the material within

the brackets is a mark of type :avg. From the point of

view of the reasoner these marks signal different processing

strategies. In advanced cases, the reasoner breaks queries

with marks into a series of decidable queries without marks.

These decidable queries may be reasoned with, and, at the

time of paraphrasing, based on the earlier marks, a series of

generation calls on decidable queries may be glued together

to accurately reflect the meaning of the reasoning steps.

Marks such as :avg, :count, :sum, etc. may resolve directly

to SQL, which has mechanisms to process these constructs.

Some more complex marks include :consequent when the

user is specifying business rules in natural language (e.g.

“a delivery date for an order must always come after the

date it was placed”), :complete (e.g. “All grades have now

been reported for DD1368 this term”), generalized quanti-

fiers such as :over-n-for-every-m (e.g. “give the customers

who have ordered most of the cheese types.”), etc.

3. Utilizing decidability

The primary advantage of using decidable logical form is

how it modularizes generation. A typical approach to gen-

erate paraphrases of a formula is to walk its syntactic form

and, piece by piece, generate language to reflect its mean-

ing. Long ago it was recognized that an alternative to this

would be to determine logically what the formula meant,

and then generate descriptions based on that (Grosz et al.,

1987). Thus if two expressions are logically equivalent, but

syntactically different, then they should map to exactly the

same set of natural language paraphrases. For example the

redundant expression {〈:avg x.population〉 |State(x) ∧
(∃y)(State(y) ∧ x.id = y.id ∧ y.name ∈ {′California′ ,
′Nevada′, ...})} generates exactly the same paraphrase(s)

as the more direct query above. This enables the reasoning

component to work with logical formulas in an unrestricted

manner, and then hand the formula to a generator that bases

generations on the meaning of the formula, not on the re-

dundant and overly complex syntactic form into which it

is transformed. In (Minock,2006) we addressed the para-

phrase of logical meaning expressions as a problem of find-

ing re-writings of a logical formula into an equivalent set

of elementary formulas with attached lexical information.

Such lexical attachments are combined to generate a para-

phrase of the exact meaning of the input query. Arguably

this addresses at least the weak variant of the well-known

logical-equivalence problem (Shieber, 1994).

While generation was the original motivation of our ex-

ploration of decidable logical form, we have found that

there are benefits to having decidability to support cooper-

ative query answering, the inclusion of domain constraints,

knowledge and even domain instances in reasoning (see

(Minock,2006) for initial work on this). Finally another

benefit of decidability is the resolution of spurious ambi-

guity during analysis. When parsing, especially when us-

ing robust (or learned semantic grammar) techniques, it is

common that semantically equivalent queries will be found

through multiple analysis paths. Testing for logical equiva-

lence is a clean method to resolve such spurious ambiguity.

Finally because the phrasal lexicon is restricted to expres-

sions in the decidable logic, we may organize it in a hierar-

chical fashion (i.e. as a subsumption hierarchy). Conflict-

ing lexical items are easily identified by inspection. This

organization helps with authoring (or perhaps in the future,

learning) the phrasal lexicon over a new database.

4. Relevance and future

The topics addressed here have a long history (Codd,

1974; Copestake & Sparck Jones, 1990; Androutsopoulos

& Ritchie., 2000), as well as active renewed interest (see

for example (Popescu et al,2003; Minock,2005; Lemon &

Liu, 2006; Zettlemoyer & Collins, 2007; Cimiano et al.,

2007; Wong & Mooney, 2007; Boye & Wirén, 2008; Wu,

2013; Li & Jagadish, 2014)). While earlier work (Alshawi

et al,1992), proposed quasi-logical form as an intermedi-

ary between surface language and full logical formulas (Al-

shawi et al,1992), such work did not expressly concern it-

self with decidability. Moreover that work was following

the transportable approach (Grosz et al., 1987) in which

the target representation was domain independent logical

form that, via a separate mechanism, was translated to a

formal query over a domain model (i.e. database schema).

While the transportable approach was seen as a way to

leverage linguistic theory for NLIs as well as grammar-

based machine translation, complexity in configuring such

systems to work over database led us to the more practical

’semantic grammar’ approach followed by C-Phrase.

While our approach of inserting marks may be regarded

as dodging the hard cases and kicking the problem to higher

level paths in pragmatic/reasoning components, a virtue of

the approach is that as new decidable classes are discov-

ered or made practical, they may be immediately incorpo-

rated, leading to simpler pragmatic/reasoning components.

This invites efforts on finding decidable theories to cap-

ture fragments expressing aggregation, generalized quan-

tifiers, etc. Approaches similar to (Barrett et al., 2009), al-

though supporting quantifiers in the input problems, hold

some promise for future advances in this regard.

While the work has been in the context of NLIs to

databases, we are considering an extension of the work

to dialogue systems. To achieve this it is necessary to al-

low for the representation of multiple layers (e.g. the dia-

logue acts, the domain model, user knowledge, belief, in-

tentions, etc.) under a single logical vocabulary under clas-

sical first order semantics. We believe a promising path to

explore is to use handles, a device that, to our knowledge,

was originally proposed under minimum recursion seman-

tics (Copestake et al., 2005).



References

H. Alshawi (editor), et-al The Core Language Engine. MIT

Press, 1995.

H. Andreka, J. van Benthem, and I. Nemeti. Modal lan-

guages and bounded fragments of predicate logic. Jour-

nal of Philosophical Logic, 27:217–274, 1998.

I. Androutsopoulos and G.D. Ritchie. Database interfaces.

In R. Dale, H. Moisl, and H. Somers, editors, Handbook

of Natural Language Processing, pages 209–240. Marcel

Dekker Inc., 2000.

C. Barrett, R. Sebastiani, S. Seshia and C. Tinelli Satisfia-

bility Modulo Theories, Handbook of Satisfiability. IOS

Press, 825–885, 2009

P. Bernays and M. Schönfinkel. Zum Entscheidungsprob-

lem der mathematischen Logik. Mathematische An-

nalen, 99:342-372, 1928.

E. Börger and E. Grädel and Y. Gurevich. The Classical

Decision Problem. Springer, 1997.

J. Boye and M. Wirén. Robust parsing and spoken nego-

tiative dialogue with databases. Natural Language Engi-

neering, 14(3):289-312, 2008.

P. Cimiano, P. Haase, and J. Heizmann. Porting natural lan-

guage interfaces between domains: an experimental user

study with the ORAKEL system. In Intelligent User In-

terfaces, pages 180–189, 2007.

E. Codd. Seven steps to rendezvous with the casual user. In

IFIP Working Conference Data Base Management, 179–

200, 1974.

A. Copestake and K. Sparck Jones. Natural language in-

terfaces to databases. The Natural Language Review,

5(4):225–249, 1990.

A. Copestake, D. Flickinger, I. Sag and C. Pollard. Min-

imal recursion semantics: an introduction. Research on

Language and Computation, 3(1):281-332, 2005.

B. Grosz, D. Appelt, P. Martin and F. Pereira. Team: An ex-

periment in the design of transportable natural-language

interfaces. AI, 32(2):173–243, 1987.

R. Jackendoff. X-bar-Syntax: A Study of Phrase Structure,

Linguistic Inquiry Monograph 2. MIT Press, 1977.

Y. Li and H. Jagadish. Constructing an Interactive Natural

Language Interface for Relational Databases In VLDB,

73–84, 2014.

O. Lemon and X. Liu. DUDE: a Dialogue and Understand-

ing Development Environment, mapping Business Pro-

cess Models to Information State Update dialogue sys-

tems. In EACL (demonstration systems), 2006.

M. Minock. C-Phrase: A system for building robust natural

language interfaces to databases. Journal of Data and

Knowledge Engineering (DKE), 69(3):290–302, 2010.

M. Minock. Describing and deriving certain answers over

partial databases. Journal of Intelligent Information Sys-

tems, 35(2):245-260, 2010.

M. Minock. Modular generation of relational query para-

phrases. Research on Language and Computation,

4(1):9–37, 2006.

M. Minock. A Phrasal Approach to Natural Language In-

terfaces over Databases. NLDB, 333–336, 2005.

A. Popescu, O. Etzioni, and H. Kautz. Towards a theory

of natural language interfaces to databases. In Intelligent

User Interfaces, 2003.

S. Shieber. The problem of logical-form equivalence.

Computational Linguistics, 19(1):179–190, 1994.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar,

M. Suda M. and P. Wischnewski SPASS version 3.5. In

22nd International Conference on Automated Deduction

(CADE2009), pages 140–145, 2009.

Y. Wong and R. Mooney. Learning synchronous gram-

mars for semantic parsing with lambda calculus. In ACL-

2007, pages 960–967, 2007.

W. Wu. Proactive Natural Language Search Engine: Tap-

ping into Structured Data on the Web. In Extending

Database Technology (EDBT), pages 143–148. 2013.

L. Zettlemoyer and M. Collins. Online learning of relaxed

CCG grammars for parsing to logical form. In EMNLP,

2007.


