
Large-Scale Hybrid Interlingual Translation in GF: a Project Description

Aarne Ranta, Krasimir Angelov, Prasanth Kolachina, Inari Listenmaa

Department of Computer Science and Engineering, University of Gothenburg

Abstract
This paper describes an on-going project on machine translation addressing, at the moment, all language pairs for 11 languages:
Bulgarian, Chinese, Dutch, English, Finnish, French, German, Hindi, Italian, Spanish, and Swedish. The translator is based
on GF (Grammatical Framework), enhanced with a statistical model learned from a treebank. It runs on multiple platforms,
including a web service and a mobile off-line Android application. These systems are open-domain browsing-quality translators,
which supports high-quality domain adaptation via embedded controlled languages. The code is open-source free software.

1. Introduction
Interlingual translation is an old idea that has been sug-
gested numerous times and refuted almost as many times.
A typical criticism is that the very idea is utopistic: that
one can never build an interlingua that faithfully represents
meaning in all languages of the world. However, as the
focus in machine translation has shifted from the perfect
rendering of meaning to less modest goals, the idea of an
interlingua can be reconsidered.

In most of the past efforts, the interlingua was thought
as a precise language-independent meaning representation
(Hutchins, 1986). In our view, it is this ideal rather than
the interlingua idea itself that has made it impossible to
build interlingual systems that scale up beyond toy exam-
ples. Therefore, if we follow the current main stream and
stay content with browsing quality, another characteristic of
interlinguas stands out: the low cost of interlingual trans-
lation systems. The interlingua is then something weaker
than a precise meaning representation. Technically, it is
just any formal structure that abstracts away from words,
morphology, agreement, and word order, and serves as a
skeleton of a content we want the translation to preserve.

An interlingual system covering all pairs of n languages
only needs 2n+1 modules, instead of n(n-1) as in pairwise
systems: one module for the interlingua, plus mappings
from each language to the interlingua and back. If we
use reversible mappings, we can further reduce the num-
ber to n+1. Thus in our current system of 11 languages, we
need 12 components, as opposed to 110 in a pairwise sys-
tem. The grammar components and everything else needed
to run the translator (parsing, generation, statistical disam-
biguation) fit in a binary file of 24 MB, whereas, for in-
stance, the off-line version of Google translate takes 200
MB per language pair. The interlingual translator scales
up to a large number of languages, and the use of gram-
mar rules compresses the information stored for each lan-
guage. The source code for the system is, for each lan-
guage, around 3000 lines for the grammar rules and 20–60
thousand lines for the lexicon (one line per lemma).

Interlingua can also decrease the need of data. The in-
terlingua in our system is an abstract syntax in the sense
of GF (Ranta, 2011). This architecture is similar to Rosetta
(Rosetta, 1994), where the interlingua is Montague’s anal-
ysis trees (Montague, 1974). All languages in a system

share the abstract syntax trees, but they can also share meta-
information associated with the trees. For instance, our cur-
rent system performs disambiguation by using tree proba-
bilities estimated from the Penn Treebank (Marcus et al.,
1993), which we have converted into GF abstract syntax
(Angelov, 2011). This model is of course based on English
data. But as long as we don’t have corresponding data for
other languages, it gives a model for those as well, which is
much better than nothing.

The light weight of the system makes it easily pro-
grammable. The compilation of the whole system from
source takes around CPU 40 minutes (10 minutes on a 4-
core processor), as opposed to the several days of training
often needed for statistical systems. The rule-based archi-
tecture makes it possible to fix individual bugs, such as
grammar errors in a particular language. Fixing a bug in
one language fixes it in 20 translation directions. As the
system enjoys separate compilation of modules, updating
the whole system with a bug fix in one language takes just
a few minutes of compilation time.

The GF Translator is not only meant as yet another
browsing-quality system on the market. GF was originally
designed for high-quality systems on specific domains. The
novelty in the current project is that we can combine both
coverage and quality in one and the same system. From the
point of view of domain-specific applications, this means
that the system doesn’t just fail with out-of-grammar input
as before, but offers robustness. From the open-domain
point of view, the system offers a clear recipe for quality
improvements by domain adaptation. In another view,
the system we have built incorporates three levels of the
Vauquois triangle in one and the same system: semantic,
syntactic, and chunk-based translation, each of which —
and not just the highest level — is based on its own part of
the interlingua:



2. How it works
2.1 The translator architecture
The GF translator pipeline has three main phases:

1. Parsing converts the source into a forest of ASTs,
Abstract Syntax Trees, i.e. interlingual representations.

2. Disambiguation selects the most probable AST.
3. Linearization converts the AST into the target lan-

guage.
Disambiguation is for efficiency reasons integrated in the

parser, which enumerates the results lazily in order of de-
creasing probability (Angelov and Ljunglöf, 2014). Unlike
for most k-best parsers, there is no upper limit on how many
results can be obtained.

Translation is performed by the following components:
1. A PGF grammar (Portable Grammar Format, An-

gelov et al. (2009)) a binary file consisting of an ab-
stract syntax (defining the ASTs) and, for each language,
a concrete syntax that defines the linearization and (by re-
versibility) parsing for the language.

2. A probability model for disambiguation.
3. The PGF interpreter, with generic parser and lin-

earizer as well as disambiguator.
The PGF interpreter is generic, so that the PGF grammar
and the probability model can be changed to produce new
translation systems. Thus the success of the GF transla-
tor does not depend on a specific interlingua, but GF is a
framework in which different interlinguas can be built.

2.2 The wide-coverage grammar
Traditional GF translation systems have small, domain-
specific interlinguas and grammars. In this paper, we as-
sume one large-scale generic grammar based on the GF
Resource Grammar Library (RGL, Ranta (2009)). The
complete grammar has the following components:

1. RGL, defining morphology and most of the syntax.
2. Syntax extensions, about 10% addition to RGL.
3. Dictionary, mapping abstract word senses to concrete

words by using open resources such as linked wordnets
and wiktionaries (Virk et al., 2014); morphology mostly
by the RGL’s "smart paradigms" (Détrez and Ranta, 2012).
Abstract dictionary entries are presented as English words
split into distinct senses. For instance, Swedish requires
splitting the noun time into senses that linearize to tid and
gång. Splitting senses is on-going work guided by transla-
tion needs rather than predefined semantics. It has shown
nice convergence properties: the French translations of time
as temps or fois result from the same split as had already
been performed for Swedish. Splitting is a part of the man-
ual checking of automatically generated dictionaries. The
11 dictionaries range in size from 16k to 66k lemmas, with
the average of 25k, of which typically 2k to 5k have already
been checked.

4. Chunk grammar, to make the translation robust for
input that doesn’t parse as complete sentences. It is inspired
by Apertium (Forcada et al., 2011), which is a rule-based
system operating only chunks rather than complete syntac-
tic analyses. In GF, it is derived from the RGL by enabling
sub-sentential categories as start categories. The result can
contain local agreement and reordering: for instance, if

French dans la maison bleue is recognized as an adverbial
chunk, it can be linearized to German as im blauen Haus.

5. Probabilities, estimated from the Penn Treebank.
6. CNL (Controlled Natural Language), an optional part

enabling domain adaptation via Embedded CNLs (Ranta,
2014). If something is parsable in the CNL, the CNL trans-
lation is given priority. CNL phrases can also appear as
chunks in robust translation. The current demos use the
MOLTO phrasebook (Ranta et al., 2011).

Adding a new language is a matter of a couple of days
of work, provided that (1) the language has an RGL; (2)
mappings to English words are available, e.g. a Wiktionary;
(3) the work is done by a person who knows both GF and
the target language well. We expect at least a few more
of the existing 29 RGL languages to be soon available for
large-scale translation.

3. First results
Wide coverage GF translation was made possible by the
statistical parser in (Angelov, 2011). Building dictionar-
ies started in 2013 (Angelov, 2014; Virk et al., 2014).
Chunk-based robustness and the embedded CNL idea are
from spring 2014. The first full-scale system was built as
a web service1 and as an Android application (Angelov et
al., 2014). Both interfaces give additional feedback to the
users: they show in colours whether the translation comes
from the semantic CNL (green), the surface-syntactic RGL
(yellow), or from chunks (red). The user can also see syn-
tax trees and alternative translations of ambiguous input.

Evaluation of translation quality is work in progress.
In the MOLTO project evaluations (Rautio and Koponen,
2013), BLEU and TER scores were calculated on the basis
of human post-edited corrections, and were clearly above
general-purpose systems (such as Google), when CNLs
were considered. Translation outside CNLs is expected to
be below the state of the art for many language pairs (e.g.
English to Swedish), but competitive for lower-resourced
unrelated languages (e.g. Bulgarian to Finnish).

4. Open questions
The probabilistic model based on individual syntax con-
structors is basically context-free and hence insufficient, in
particular for word sense disambiguation. More sophisti-
cated models introducing conditional probabilities to ab-
stract syntax trees are work in progress.

In GF, translation is compositional, because the lin-
earization rules operate on the ASTs in a subtree by subtree
fashion. This is a serious problem for translation in general,
because the syntactic structure must often be changed, e.g.
when converting Swedish jag heter NN to English my name
is NN. In a CNL setting, the problem can be avoided by
using sufficiently abstract ASTs, for instance, a two-place
"naming" predicate for the mentioned example. One direc-
tion in the on-going GF translator work is to introduce such
abstractions in large-scale grammars as well, in a way sim-
ilar to multiword expressions and constructions (Enache
et al., 2014).

1http://cloud.grammaticalframework.org/wc.html



References
Krasimir Angelov and Peter Ljunglöf. 2014. Fast statisti-

cal parsing with parallel multiple context-free grammars.
European Chapter of the Association for Computational
Linguistics, Gothenburg.

Krasimir Angelov, Björn Bringert, and Aarne Ranta. 2009.
PGF: A Portable Run-Time Format for Type-Theoretical
Grammars. Journal of Logic, Language and Informa-
tion.

Krasimir Angelov, Björn Bringert, and Aarne Ranta. 2014.
Speech-enabled hybrid multilingual translation for mo-
bile devices. EACL 2014, page 41.

Krasimir Angelov. 2011. The Mechanics of the Grammat-
ical Framework. Ph.D. thesis, Chalmers University of
Technology.

Krasimir Angelov. 2014. Bootstrapping open-source
english-bulgarian computational dictionary. In Proceed-
ings of the Ninth International Conference on Language
Resources and Evaluation (LREC-2014), Reykjavik, Ice-
land, May 26-31, 2014., pages 1018–1023.

Grégoire Détrez and Aarne Ranta. 2012. Smart paradigms
and the predictability and complexity of inflectional mor-
phology. In EACL (European Association for Compu-
tational Linguistics), Avignon, April. Association for
Computational Linguistics.

Ramona Enache, Inari Listenmaa, and Prasanth Kolachina.
2014. Handling non-compositionality in multilingual
CNLs. In Controlled Natural Language - 4th Interna-
tional Workshop, CNL 2014, Galway, Ireland, August
20-22, 2014. Proceedings.

Mikel L Forcada, Mireia Ginestí-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan Antonio
Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-
Sánchez, and Francis M Tyers. 2011. Apertium: a
free/open-source platform for rule-based machine trans-
lation. Machine Translation, 25(2):127–144.

W. J. Hutchins. 1986. Machine translation: past, present,
future. Ellis Horwood Chichester.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus of
English: The Penn Treebank. Computational linguistics,
19(2):313–330.

R. Montague. 1974. Formal Philosophy. Yale University
Press, New Haven. Collected papers edited by Rich-
mond Thomason.

Aarne Ranta, Ramona Enache, and Grégoire Détrez. 2011.
Controlled Language for Everyday Use: the MOLTO
Phrasebook. Proceeding of CNL 2010, Zurich.

A. Ranta. 2009. The GF Resource Grammar Li-
brary. Linguistics in Language Technology, 2.
http://elanguage.net/journals/index.
php/lilt/article/viewFile/214/158.

Aarne Ranta. 2011. Grammatical Framework: Program-
ming with Multilingual Grammars. CSLI Publications,
Stanford. ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

Aarne Ranta. 2014. Embedded controlled languages. In
Controlled Natural Language - 4th International Work-

shop, CNL 2014, Galway, Ireland, August 20-22, 2014.
Proceedings.

Jussi Rautio and Maarit Koponen. 2013. Deliverable 9.2:
Molto evaluation and assessment report.

M. T. Rosetta. 1994. Compositional Translation. Kluwer,
Dordrecht.

Shafqat Mumtaz Virk, KVS Prasad, Aarne Ranta, and
Krasimir Angelov. 2014. Developing an interlingual
translation lexicon using wordnets and grammatical
framework. COLING 2014, page 55.

http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158

	Introduction
	How it works
	The translator architecture
	The wide-coverage grammar

	First results
	Open questions

