
Mining Relations from Git Commit Messages — an Experience Report

Rikard Andersson∗, Morgan Ericsson†∗, Anna Wingkvist†

∗Chalmers | University of Gothenburg
Gothenburg, Sweden

mail@rikardandersson.se, morgan@cse.gu.se

†Linnaeus University
Växjö, Sweden

anna.wingkvist@lnu.se

1. Introduction
Software repositories contain rich data that can be used to
uncover interesting and actionable information about soft-
ware systems, projects, and development. Hassan and Xie
(2010) coin the term software intelligence as a parallel to
business intelligence and suggests that up-to-date informa-
tion derived from software repositories is useful to devel-
opers, decision makers, and researchers. Much of this data,
such as specifications, bug reports, etc. is expressed in free
form natural language. We focus on commit messages,
short texts written by developers to describe changes to
the software repository. Our hypothesis is that such mes-
sages contain one or more relations that capture the in-
tent(s) of the commit. For example, the commit message
“Fixes #1097” with a “Fixes”-relation between the author
and the issue #1097, suggests that the intent of the commit
was to fix that specific issue.

We applied our relation extractor, Relex (Andersson,
2014), that performs well on web-style English texts to
commit messages on Github and found a significant drop
in performance compared to the text types we trained our
relation extractor on. We describe the experiment setup and
results, and perform a qualitative study to find the reasons
for the drop in performance. We find that the grammar and
structure used in commit messages combined with heavy
use of domain specific terms made it difficult to find sen-
tence boundaries, tokens, and part-of-speech (POS) tags,
which Relex needs.

2. Experiment
We randomly selected and annotated 600 commit
messages1 from the MSR 2014 Mining Challenge
Dataset (Gousios, 2013). Each message was annotated
with relations and entities by a single person. How-
ever, the annotation guidelines (c.f., Appendix B in An-
dersson (2014)) and some examples where first discussed
among the three authors. Since many commit messages
refer to actions of an implicit Author entity (e.g., “Up-
date CHANGELOG to mention the json escape change”)
we consider relations between two explicit entities (Entity
relations) and between an implicit author and an explicit
entity (Author relations). To manage the latter, we add a

1Available at https://github.com/Rikard-
Andersson/GHTorrent-Brat.

mock Author entity at the beginning of every sentence. In
the 600 messages there are 66 true Entity relations and 338
true Author relations.

Relex consists of a three-stage pipeline that (i) pre-
processes the input, (ii) classifies binary candidate rela-
tions as true or false, and (iii) label the relation. In (i) we
use Apache OpenNLP to detect sentences, tokenize these,
and annotate each token with its POS. In (ii) we generate
all possible binary relations between Noun Phrases (NP),
Named Entities (NE), or a combination. These relation
candidates are then classified as true or false using super-
vised learning (SVM). We rely on bag-of-words and POS
sequences as features (Merhav et al., 2012; Banko et al.,
2007). In (iii) we label true relations using a simple heuris-
tic, inspired by Xu et al. (2013) and Etzioni et al. (2011),
based on POS sequences between two candidates: (a) last
verb, (b) last noun, or (c) last token.

We trained the three models (NE-NE, NE-NP, and NP-
NP) in (ii) on data from CoNLL 2011 shared task (Pradhan
et al., 2011). The relations for the NE-NE set contain all
pairs of named entities, and a relation is considered true
if it is found in the PropBank predicate-argument annota-
tions. In the NE-NP and NP-NP datasets false relations are
found by discriminating based on a dependency tree. We
use the distance between the first and second entity in the
dependency tree as a discriminator. If the distance is greater
than three we label the candidate as false, less than three as
positive, and if it is precisely three we leave it out entirely.
Additionally, the arguments (noun phrases or named enti-
ties) must follow the predicate pattern with a subject and an
object to be considered a true relation.

To evaluate the binary classifier in (ii) we use each of the
three models to identify either Entity or Author relations
from the pre-processed commit messages, and measure the
Precision, Recall, and F-measure. Table 1 shows that the
performance is significantly worse, no matter which model
we use. Since (iii) depends on (ii) we only evaluate it on
known correct data, i.e., the annotated true binary relations.
Table 2 shows the ratio of suggested labels that are identical
to the manual annotation.

3. Why did we lose accuracy?
We found that automatically generated commit messages
occurred often and were problematic for Relex. These
messages follow a wide range of patters, e.g., “svn

https://github.com/Rikard-Andersson/GHTorrent-Brat
https://github.com/Rikard-Andersson/GHTorrent-Brat


Git commit messages CoNLL 2011 shared task
Relation type Model Precision Recall F-measure Precion Recall F-measure

Entity
NE–NE 0.848 0.141 0.242 0.821 0.874 0.847
NE–NP 0.273 0.167 0.207 0.840 0.745 0.790
NP–NP 0.409 0.205 0.273 0.809 0.793 0.801

Author
NE–NE 0.556 0.242 0.337
NE–NP 0.473 0.432 0.452
NP–NP 0.701 0.507 0.589

Table 1: Performance of the binary classifier on Git and CoNLL data.

Accuracy
Relation type Git CoNLL (avg.)

Entity relations 0.515 0.947
Author relations 0.675
Both kinds of relations 0.649

Table 2: Comparing accuracy of the relation labelling.

path=/trunk/mono/; revision=111467” and “Merge pull re-
quest #370 from Memphiz/airplay”. Messages such as the
former should be disregarded, but given the vast number
of tools and patterns the process to identify and filter these
messages should be automated.

The syntax and grammar used in commit messages are
often not of the same standard as the English sentences we
trained on and the vocabulary is different (i.e., domain spe-
cific). This causes problems for the sentence detection and
POS tagging. Punctuation and capitalization are used dif-
ferently from well-formed English sentences. Dots occur
in tokens such as file or method names, e.g., “Fix check for
browser.mozilla so that Safari is not flagged as mozilla” is
interpreted as: “Fix check for browser.mozilla” and “so that
Safari is not flagged as mozilla”. We also found that semi-
colon and linefeed were commonly used to delimit sen-
tences. We also found several messages with poor sentence
structure (or grammar), e.g., “extracted the built in profil-
ing out added pp=profile-gc-time”. Since Relex relies on
sentences as a boundary for relations and to find a suitable
mock-entity for Author relations, incorrectly detected sen-
tence boundaries will reduce the accuracy.

The domain specific vocabulary causes problems for
the POS tagger, e.g., commit and pull (request) are of-
ten used as nouns. The relation in “postgresql con-
flicts with postgres-xc” should be trivial to detect, but
the binary classifier fails since postgresql and postgres-
xc are considered as adjectives. Incorrect POS tags can
also result in incorrect labels; in “cluster: Rename de-
stroy() to kill(signal=SIGTERM)” Rename is considered
an adjective, so the relation becomes (cluster, destroy(),
kill(signal=SIGTERM)). POS tags and sequences of these
represent half of the features for the binary classifier and all
of the features for the relation phrase extractor. When this
pre-processing step fails, further processing will also falter.

Many problems can be attributed to specific use of syn-
tax and terminology. However, there are examples where
sentence detection and POS tagging is correct yet the clas-
sification fails due to different language use, e.g., Relex
finds a true relation, (Use, mono save args, ARGSTORE)

in “(mono save args): Use ARGSTORE instead of TEMP-
STORE to handle soft float correctly.” together with four
false. Similarly, Relex finds an Entity relation between lo-
gin shell and #59 “Start login shell (fixes #59 github issue)
(per Austin Clements)” rather than an Author relation to
#59. These examples illustrate how differently syntax and
vocabulary are used in commit messages compared to the
more standard language in the CoNLL data we trained on.

4. Conclusions
We identified several issues that cause Relex to perform
poorly; mostly based on the poor fit between Relex and the
data. The sentence detector, POS tagger, and binary clas-
sifier all fail since there is a mismatch between model and
data. So, should we use different models or algorithms that
do not rely on models to improve accuracy?

There are, to our knowledge, no models trained specifi-
cally for commit messages. Existing models are either spe-
cific to their domain or generic to well-formed English sen-
tences, i.e., what we use. In our experience, it is not a good
option to create new models for this purpose; the language
use differs between projects, third party software, and even
individuals. To make model creation feasible, one could in-
vestigate repositories used by a large, single body, e.g., a
company. We then expect better guidelines and thus, more
uniform syntax and language use.

Both the binary classifier and the relation phrase extrac-
tor could benefit from models trained on hand-annotated,
domain specific data. For the relation phrase extractor, an
algorithm such as conditional random fields could be used.
However, features used by the algorithm would still need
domain specific models. Also, it is difficult for an anno-
tator to comprehend what the commit message author tries
to convey when the syntax and terminology is not familiar
to the annotator or when the language strays too far from
conventional English.

Another option is to use different features and algorithms
that are not as sensitive to noisy data. One possibility
is less supervised machine learning algorithms, such as
semi-supervised, self-supervised, and distantly supervised.
These have all shown previous success for NLP. Given the
structured data available in software repositories we intend
to investigate distantly supervised learning next.

Acknowledgements
Relex was developed as part of a Master’s thesis in collabo-
ration with Findwise (http://www.findwise.com).

http://www.findwise.com


References
R. Andersson. 2014. Mining Relations from Git Reposito-

ries. Master’s thesis, Chalmers, Sweden.
M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. 2007. Open information extraction from the
web. In Proc. 20th Int. Conf. Artifical Intelligence (IJ-
CAI’07), pages 2670–2676.

O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
M. Mausam. 2011. Open information extraction: The
second generation. In Proc. 22nd Int. Conf. Artifical In-
telligence (IJCAI’11), pages 3–10.

G. Gousios. 2013. The ghtorrent dataset and tool suite.
In Proc. 10th Work. Conf. Mining Sw. Repositories
(MSR’13), pages 233–236.

A.E. Hassan and T. Xie. 2010. Software intelligence:
The future of mining software engineering data. In
Proc. FSE/SDP Works. Future of Sw. Eng. Research
(FoSER’10), pages 161–166.

Y. Merhav, F. Mesquita, D. Barbosa, W.G. Yee, and
O. Frieder. 2012. Extracting information networks from
the blogosphere. ACM Trans. Web, 6(3):11.

S. Pradhan, L. Ramshaw, M. Marcus, M. Palmer,
R. Weischedel, and N. Xue. 2011. CoNLL-2011 shared
task: Modeling unrestricted coreference in OntoNotes.
In Proc. 15th Conf. Computational Natural Language
Learning, pages 1–27.

Y. Xu, M-Y Kim, K. Quinn, R. Goebel, and D. Barbosa.
2013. Open information extraction with tree kernels. In
Proc. Conf. NAACL HLT, pages 868–877, June.


	Introduction
	Experiment
	Why did we lose accuracy?
	Conclusions

